
IEOR 151 – Lecture 19

Markov Processes

1 Definition

A Markov process is a process in which the probability of being in a future state conditioned
on the present state and past states is equal to the probability of being in a future state
conditioned only on the present state. There are certain key features of Markov processes
that can be used to classify different models:

1.1 State Space

The space to which the states of the model belong can be used to classify different models.
The state describes the current configuration of the system, and it captures the important
aspects of the system. The fact that the future evolution of a Markov process only depends
on the current state is important because it means that for these classes of models the state
completely characterizes the configuration of the system. In other words, there are no hidden
variables that influence the evolution of the system. The notion of hidden states is particu-
larly relevant in physics to quantum mechanics, where the question of whether the stochastic
nature of quantum mechanics is due to hidden variables has been deeply studied.

Discrete state spaces are those in which the states are represented by a discrete set of objects.
For example, we could describe a doctor in a hospital with a discrete state space in which
some states could correspond to

• Meeting Patient

• Performing Procedure

• Idling

• Administration

Depending on the level of analysis, we might have more or less states to describe the system.

Continuous state spaces are those in which the states are represented by a continuous set of
objects. An example is position of a ball we have thrown in space. The position of the ball
can occupy different continuous values.
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Hybrid state spaces are those in which the states are represented by a combination of discrete
and continuous sets. For example, consider a bouncing ball. We need to use a discrete state
to describe if the ball is in the air or if the ball is bouncing on the ground. Furthermore, we
need continuous states to describe the position and velocity of the ball.

1.2 Initial Conditions

To define the evolution of a Markov process, we need to specify an initial condition, which
represent the states of the system at the “start”. The initial condition can be stochastic or
deterministic. For instance, we can specify a distribution of states the system “starts” at.

1.3 Time

Two common classes of models are discrete-time and continuous-time models. In most
Markov processes, time is a privileged variable, meaning that it is interpreted as a clock that
keeps track of the duration between events; however, this is not the case in general. For
instance, special and general relativity models from physics drop time from this privileged
position in a precise way.

Discrete-time models are those in which time increases in discrete increments. Starting from
t = 0, time advances as t = t+1, and actions in this class of models occur at every increment.
Because of the discrete nature of time in this class of models, the time variable t is often
used as an index for the state-variables. So if, say, the state is x ∈ Rp, then the value of
the state at time t is denoted xt or x[t]. Because of the discrete nature of time, another
convention is to use the variables n or k to denote time.

Continuous-time models are those in which time continuously increases. Starting from t = 0,
time advances as d

dt
t = 1, and actions in this class of models can occur at any point in time.

Because of the continuous nature of time in this class of models, the time variable is used
as the input into a function describing the states. So if the state is x, then the value of the
state at time t is denoted as x(t).

These are not the only classes of models for temporal evolution. For instance, hybrid-
time models are those in which time increases in both discrete and continuous increments.
These types of models occur when describing certain semi-autonomous, robotic, or embedded
systems.

2 Markov Chains

A Markov chain is a Markov process in which the state space is discrete. These vertices will
act as an abstraction for different quantities of the system. For instance, we will use vertices
to represent the number of people waiting in the queue for a service system. The time in
this class of models can be continuous, discrete, or hybrid. In this class, we will focus on
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continuous-time Markov chains.

Because of the discrete nature of the state space, the system is represented by a weighted
directed graph G = (V,E), where the vertices vi ∈ V represent states of the system and the
edges eij ∈ E denotes an edge from vi going towards vj. Furthermore, every vertex vi has
a self-loop, meaning an edge eii ∈ E for all vi ∈ V . By convention, these self-loops are not
drawn because they have a fundamentally different characteristic.

The edges eij ∈ E for i 6= j have strictly positive weights wij, while the edges eii ∈ E
have non-positive weights. For a continuous-time Markov chain, the weights will represent
transition rates. In particular, if edge eij has weight wij then this means that for a small
increment of time h, we have the following probability of transitioning states for all vi, vj ∈ V
(even for vi = vj):

P[x(t+ h) = vj|x(t) = vi] ≈ 1vj=vi + wijh.

3 Poisson Process

A Poisson process is an integer-valued counting process {N(t), t ≥ 0} (with N(t) ∈ N) in
which the interarrival times are described by an exponential distribution. Recall that an
exponential distribution with rate λ > 0 has distribution function F (u) = 1− exp(λu), and
its mean is 1/λ. Exponential distributions have an interesting memoryless property, meaning
that if T has exponential distribution, then

P[T > s+ t|T > s] = P(T > t).

What this intuitively means is that if you are waiting for an arrival for s units of time, then
the probability of an arrival after t additional units of time does not depend on how long you
have been waiting for. This model is realistic for some situations and unrealistic for other
situations.

There are a number of important properties of Poisson processes:

1. N(0) = 0;

2. The number of arrivals in disjoint intervals are independent;

3. The number of arrivals in any time interval depends only on the length of the interval;

4. The distribution of N(t) is given by a Poisson distribution;

5. Multiple arrivals cannot simultaneously occur;

6. Interarrival times have exponential distribution;

7. Arrivals are distributed uniformly on any interval of time.
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