IEOR 151 — Lecture 17
Vehicle Routing Problem

1 Problem Formulation

In the vehicle routing problem, there are a set of depots, vehicles, and delivery locations,
and the problem is to optimally design routes for the vehicles from the depots to delivery
locations. To formally define the version of the problem that we will consider in this class,
suppose that there is an undirected graph G = (V, E) with vertices V' = {vg, v1,...,v,} and
edges e;; € I between vertices v; and v;. One important facet of this model is that each
vertex is connected by an edge. Without loss of generality, we will assume that the depot
is located at vertex vy, and there are delivery locations (e.g., buildings, cities, etc.) at the
remaining vertices. Furthermore, the edges e;; are weighted by d;;, which represents the
distance between vertices v; and v;. The maximum number of vehicles is n, which would be
the situation in which exactly one vehicle is assigned to each delivery location. Each vehicle
has a maximum capacity of goods GG, and each vehicle has a maximum distance D that it
can travel. Finally, each delivery location v; for ¢ > 1 has a demand value w;.

The vehicle routing problem is to find least-cost vehicle routes so that
1. Each delivery location is visited exactly once by exactly one vehicle;
2. All vehicles start and end at the depot;

3. Side constraints on maximum vehicle capacity and travel distance are satisfied;

2 Integer Linear Programming Solution

There are a number of different solutions to this problem, depending upon the size of the
problem and also the side constraints (other constraints such as on times windows for deliv-
ery are possible by modifying the problem formulation). One solution is to use an integer
linear program (ILP), but the weakness of this approach is that there are many constraints
and requires special numerical approaches with set partitioning and column generation. As a
side note, this approach is quite similar to the cycle-weight formulation for kidney exchanges.

Let C(G, D) be the set of all feasible routes, in which a single route r € C'(G, D) is such that
a vehicle does not visit the same delivery location more than once, the demand weight of all
delivery locations on the route is less than G, the total (round-trip) distance of the route is
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less than D, and the route starts and ends at the depot vertex vy. For any r € C(G, D),
define L(r) to be the total (round-trip) distance of the route. Lastly, define z, to be a binary
decision variable the denotes whether a route is or is not in the optimal solution. Then, we
can formulate the problem as the following ILP

min Z L(r)x,

s.t. Z Wy er) z.=1,Vi>1
reC(G,D)
z,. € {0,1},Vr € C(G, D),

where 1(v; € r) is an indicator function that is 1 whenever v; € r and is 0 otherwise.

3 More Information and References

The material in the first two sections of these notes follows that of the journal paper G.
Laporte, “The Vehicle Routing Problem: An overview of exact and approximate algorithms,”
FEuropean Journal of Operational Research, vol. 59, pp. 234-358, 1992.
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