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1 Kidney Stone Treatment Example

1.1 S’ P

In a study1 comparing the effectiveness of two classes of treatments for kidney stones, the following
success rates for each class of treatment were obtained:

Stone size Open surgery Percutaneous
nephrolithotomy

< 2cm 81/87 (93%) 234/270 (87%)
≥ 2cm 192/263 (73%) 55/80 (69%)
Overall 273/350 (78%) 289/350 (83%)

Table 1: e numbers of successful treatments and total treatments are shown, with the success
rate given in parenthesis.

What is interesting about this example is that there is a counterintuitive result. Percutaneous
nephrolithotomy has a higher success rate when all stone sizes are grouped together, but open
surgery has a higher success rate when comparing based on stone size. is result shows the need
for careful consideration of data when making comparisons.

1.2 E  P

e natural question to ask is: Why does this odd behavior occur in the kidney stone treatment
example? When comparing the treatments with the aggregated data, an assumption is implicitly
being made that the decision for which treatment to use does not depend upon the size of the the
kidney stones. It turns out that this implicit assumption is incorrect, because open surgery was more
often used for larger kidney stones; however, larger kidney stones is general have a lower treatment
success rate because of its more complicated nature.

1C. Charig, D. Webb, S. Payne, J. Wickham, “Comparison of treatment of renal calculi by open surgery, percu-
taneous nephrolithotomy, and extracorporeal shockwave lithotripsy”, Br Med J (Clin Res Ed), vol. 292, no. 6524, pp.
879–882, 1986.
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2 Specification of a Two-Decision Problem

A two-decision problem is a situation in which there are two possibilities, and one of these possibil-
ities must be chosen as being the more “likely” one given data about the possibilities. ese types of
problems are usually defined in terms of testing a null hypothesis that is accepted or rejected. ere
are a variety of approaches to evaluating such decisions problems, and we will focus on methods
where the probability of rejecting a null hypothesis when it is true (type I error or false positive) is
controlled to be below a significance level α.

2.1 D  H

e null hypothesis is the choice that is to be believed by “default” unless data suggests other-
wise. An example of a null hypothesis is that measurements from two groups Ai ∼ N (µa, σ

2
a) and

Bi ∼ N (µb, σ
2
b ) have the same mean µa = µb with possibly different variances.

e alternative hypothesis is the “opposite” choice. ere are three important classes of alternative
hypothesis: one-tailed directional, two-tailed directional, and non-directional. For the example
above, corresponding alternatives could be

1. One-tailed directional: µa < µb;

2. Two-tailed directional: µa < µb or µa > µb;

3. Non-directional: µa ̸= µb, which is equivalent to the two-tailed directional in this example.

e reason for a distinction between one-tailed and two-tailed tests is related to the idea of the
power of a test. Before we can define what this means, we first have to discuss how to control type
I errors.

2.2 S L

A test statistic is a function of the observed data that is used to summarize the data being tested. For
our example above when assuming that the variances are known to be σ2

a = σ2
b = 1 and the number

of samples from the two groups are equal n1 = n2 = n, a possible test-statistic for comparing the
means is

t =

√
n

2

(
1

n

n∑
i=1

Ai −
1

n

n∑
i=1

Bi

)
.

e probability of observing a test statistic that is as extreme or more extreme, under the distribu-
tion specified by the null hypothesis, is called the p-value. If a null hypothesis is rejected only when
the p-value is smaller than the significance level α, then the probability of making a type I error
(false positive or falsely rejecting the null hypothesis) is controlled to be smaller than α. On the
other hand, if the p-value is greater than α, then the null is accepted.

2



e interpretation is subtle. Technically speaking, the null hypothesis cannot be proven to be true
or untrue. Rejecting the null hypothesis is a statement that the probability of making the same
measurements as were observed, under the null distribution, is “small”. On the other hand, ac-
cepting the null hypothesis is a statement that there is not enough evidence to be able to reject the
null hypothesis; it is not a statement that the null hypothesis is true. Real-world practice typically
necessitates making a decision (accepting or rejecting the null), and this can obscure the formal
meaning of the tests.

ere is another subtle point that is important to note. In practice, the choice of the significance
level is often a subjective decision. And if the choice of the significance level can be subjective,
then the decision made by the hypothesis test can also be subjective. What this means is that risk
(or cost) introduced by making an incorrect decision in either direction should be considered when
choosing the significance level and when accepting or rejecting the null hypothesis. It can be the
case that a null hypothesis should be rejected given the chosen significance level (e.g., p = 0.049
and α = 0.05), but the risk (or cost) of making type I error is high enough that the null is instead
accepted. e alternative situation can also occur.

2.3 P

e power of a test is the probability that the null hypothesis will be rejected when the alternative is
true. As an extreme example, suppose that the null hypothesis is always accepted. en, the proba-
bility of making a type I error is always smaller than α, no matter what the value of α is. However,
this test is not useful because it never rejects the null hypothesis. In this extreme example, the test
has low power.

Strictly speaking, we cannot compute the power of a test under this framework because we do
not prescribe a distribution for the alternative hypothesis. However, we can qualitatively affect the
power through our choice of a one-tailed versus two-tailed directional alternative. Consider the
test-statistic we defined above

t =

√
n

2

(
1

n

n∑
i=1

Ai −
1

n

n∑
i=1

Bi

)
=

√
n

2

(
1

n

n∑
i=1

Ai − µ+ µ− 1

n

n∑
i=1

Bi

)
,

Next note that the Central Limit eorem implies that
√
n( 1

n

∑n
i=1Ai − µ)

d→ N (0, 1) and
√
n( 1

n

∑n
i=1Bi − µ)

d→ N (0, 1). But since Ai, Bi are independent, we can conclude by a standard
result that these sequences jointly converge as(√

n( 1
n

∑n
i=1Ai − µ)√

n( 1
n

∑n
i=1Bi − µ)

)
d→
(
N (0, 1)
N (0, 1)

)
,

where the components of the limiting distribution are independent (cf. the example for Slutsky’s
theorem from last lecture). A simple application of the Continuous Mapping eorem gives that
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t
d→ 1/

√
2N (0, 2) = N (0, 1). e one-tailed and two-tailed alternative hypothesis involve com-

puting p-values using either one or both tails of this limiting Gaussian distribution.

is shows the intuition behind the names one-tailed and two-tailed. When the alternative hy-
pothesis is the one-tailed directional µa < µb, then we only need to consider the left side of the
Gaussian distribution when computing p-values. If the alternative is the two-tailed directional
µa < µb or µa > µb, then we need to consider both sides of the Gaussian distribution when com-
puting p-values. Qualitatively, using a two-tailed alternative when a one-tailed alternative could be
used leads to a lower power because it allows for possibilities that are not relevant to the situation.
However, using a one-tailed alternative when a two-tailed alternative should be used can cause the
test to not meet the desired significance level; it is possible for the p-value to artificially decrease in
this situation.
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