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1 Optimality Conditions Example

Consider the following optimization problem

min x1 + x2

s.t. x ∈ R2

− x1 − 1 ≤ 0

− x2 − 1 ≤ 0

2x1 + x2 = 0

4x1 + 2x2 = 0,

and use X to denote the feasible set defined in the normal way. If the point x∗ ∈ X is a local
minimizer, then the Fritz John conditions are that there exists λ0, λ1, λ2 and µ1, 2 such that

λ0 − λ1 + 2µ1 + 4µ2 = 0

λ0 − λ2 + 1µ1 + 2µ2 = 0

λ0, λ1, λ2 ≥ 0

λ1(−x1 − 1) = 0

λ2(−x2 − 1) = 0

(λ0, λ1, λ2, µ1, µ2) ̸= 0.

e first question is: Which points x∗ (not necessarily minimizers) satisfy the Fritz John condi-
tions. Note that the values (λ0, λ1, λ2, µ1, µ2, x

∗
1, x

∗
2) = (0, 0, 0,−2, 1, 0.25,−0.5) satisfy the Fritz

John conditions. In fact, by choosing µ1 = −2 and µ2 = 1 we can have an infinite number of
points that satisfy the Fritz John conditions. is is discouraging because we would ideally like the
number of points satisfying the optimality conditions to be small. Note that in these cases λ0 = 0,
meaning that the objective is not influencing the point.

e next question is: Does constraint qualification hold for this problem? is would be the first ex-
planation for the degeneracy of the Fritz John conditions. Computing the gradients of the equality
constraints gives (

2
1

)
,

(
4
2

)
.
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e two gradients are clearly not linearly independent. As a result, LICQ fails at every point in the
feasible set.

Given the failure of the LICQ, how can we rewrite the optimization problem to ensure LICQ holds
at every point? Removing the constraint 4x1 + 2x2 = 0 fixes the problem. is is because if the
−x1 − 1 ≤ 0 constraint is active (meaning x1 = −1), then the equality constraint forces x2 = 2.
On the other hand, if the −x2 − 1 ≤ 0 constraint is active (meaning x2 = −1), then the equality
constraint forces x1 = 0.5. e point is that only one inequality constraint can be active at a time,
and so the gradient of an active inequality constraint (either

(
−1 0

)′ or (0 −1
)′) cannot be lin-

early dependent with the gradient of the remaining equality constraint
(
2 1

)′. us, removing
the constraint 4x1 + 2x2 = 0 ensures that LICQ holds at every feasible point.

Since we not have LICQ of the modified optimization problem, we can now compute the KKT
conditions. For a local minimizer x∗ ∈ X there exists λ1, λ2 and µ1 such that

1− λ1 + 2µ1 = 0

1− λ2 + 1µ1 = 0

λ1, λ2 ≥ 0

λ1(−x1 − 1) = 0

λ2(−x2 − 1) = 0

So the natural question to ask is which points x∗ satisfy the KKT conditions? Because of the
complimentarily conditions, there are basically two interesting cases. Either (a) x1 = −1 or (b)
x2 = −1; this is as expected because the optimal solution for a linear program lies on the boundary
of the feasible set. In case (a), the equality constraint forces x2 = 2; so λ2 = 0 by the second com-
plimentarily condition, and so the second stationarity condition forces µ1 = −1, which means that
λ1 = −1 by the first stationarity condition. But this is negative and not allowed. Hence, case (a)
does not solve the KKT conditions. In case (b), the equality constraint forces x1 = 0.5; so λ1 = 0
by the first complimentarily condition, and so the stationarity condition forces µ1 = −0.5, which
means that λ2 = 0.5.

Since only one point satisfies the KKT conditions, it must be the global minimizer. e global
minimizer is x∗

1 = 0.5 and x∗
2 = −1, and the minimum value is −0.5.

2 Parametric Optimization Problems

Many problems can be cast as a parametric optimization problem. ese are optimization problems
in which there is a free parameter θ ∈ Rp, and the optimization to be solved is different depending
on the value of θ. Notationally, we write

V (θ) = min f(x; θ)

s.t. x ∈ C(θ).
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ese types of problems are common in game theory, control engineering, and mathematical eco-
nomics. One important question is whether the minimizers x∗(θ) and value function V (θ) are
continuous with respect to the parameter θ.

2.1 B M T

e Berge Maximum eorem provides an interesting set of conditions for when the minimizers
and value function are appropriately continuous. e reason for stating appropriately continuous
is that the function C(θ) is not a function in the normal sense; it is a multivalued function, and so
continuity has to be redefined. e intuition of the theorem is that if the objective is continuous in
the usual way, and the constraint set is continuous in an appropriate way, then the value function
is continuous and the minimizer is continuous in an appropriate way. More formally:

If f(x; θ) is jointly continuous in x, θ and C(θ) is compact-valued, lower hemicontinuous, and
upper hemicontinuous, then the value function V (θ) is continuous and the minimizer x∗(θ) is
nonempty, compact-valued, and upper hemicontinuous.

Below we will define hemicontinuity; however, it is worth mentioning two important examples of
constraint sets for which C(θ) is both upper and lower hemicontinuous. e first example is when
the constraint set is independent of θ. e second example is when the constraint set is linear in
both x and θ.

2.2 U H

We say that C(·) : Rp → Rn is upper hemicontinuous at θ ∈ Rp if ∀θk ∈ Rp, ∀xk ∈ C(θk), and
∀x ∈ Rn; we have

lim
k→∞

θk = θ, lim
k→∞

xk → x ⇒ x ∈ C(θ).

e intuition is that every sequence xk ∈ C(θk) converges to a point x ∈ C(θ).

2.3 L H

We say that C(·) : Rp → Rn is lower hemicontinuous at θ ∈ Rp if ∀θk ∈ Rp such that θk → θ,
∀x ∈ C(θ), there exists a subsequence θkj and xk ∈ C(θkj) such that xk → x. e intuition is that
for every point x ∈ C(θ) there is a sequence xk ∈ C(θk) that converges to the point.
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