IEOR 151 - LecTUure 1
ProsaBiLITY REVIEW

1 Definitions in Probability and Their Consequences

1.1 DEFINING PROBABILITY
A probability space (€2, F,P) consists of three elements:
* A sample space €2 is the set of all possible outcomes.
* 'The o-algebra F is a set of events, where an event is a set of outcomes.

* The measure P is a function that gives the probability of an event. This function PP satisfies
certain properties, including: P(A) > 0 for an event A, P(Q2) = 1,and P(A; U A, U ...) =
P(A;) + P(A2) + ... for any countable collection Ay, Ay, ... of mutually exclusive events.

Some useful consequences of this definition are:

* For a sample space €2 = {01, ..., 0, } in which each outcome o; is equally likely, it holds that
P(o;)) =1/nforalli=1,... n.

P(A) = 1 — P(A), where A denotes the complement of event A.
* For any two events A and B, P(AU B) =P(A) + P(B) —P(AN B).

If AC B, thenP(A) < P(B).
* Consider a finite collection of mutually exclusive events By, . . ., By, such that B;U. . .UB,, =
Q and P(B;) > 0. For any event A, we have P(A) = > ;" P(AN By,).
1.2 CoNDITIONAL PROBABILITY
'The conditional probability of A given B is defined as

P(AN B)

PIAIB] = —5 5

Some useful consequences of this definition are:

* Law of Total Probability: Consider a finite collection of mutually exclusive events By, . . ., B,
such that B; U...U B, = Q and P(B;) > 0. For any event A, we have

P(A) =5 . P[A|By|P(By).
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* Bayes’ Theorem: It holds that

PIA|BIP(B)

PIBIA] = =55

1.3 INDEPENDENCE

Two events A; and A, are defined to be independent if and only if P(A; N Ay) = P(A;)P(A,).
Multiple events Ay, As, ..., A, are mutually independent if and only if for every subset of events

{Ai,.. . A} C{A, ..., ALl

the following holds:
]P)(HZ:lAik> - HZ:I]P(A%)

Multiple events Ay, A, ..., A, are pairwise independent if and only if every pair of events is in-
dependent, meaning P(A4,, N Ay) = P(A,)P(A) for all distinct pairs of indices n, k. Note that
pairwise independence does not always imply mutual independence! Lastly, an important property
is that if A and B are independent and P(B) > 0, then P[A|B] = P(A).

1.4 RanDpDoM VARIABLES

A random variable is a function X (w) : 2 — B that maps the sample space {2 to a subset of the
real numbers B C R, with the property that the set {w : X (w) € b} = X *(b) is an event for
every b € B. The distribution function (d.f.) of a random variable X is defined by

Fx(u) =P(w: X(w) < u).

2 Stochastic Convergence

2.1 CONVERGENCE IN DISTRIBUTION

A sequence of random variables X, X5, ... converges in distribution to a random variable X if

lim Fy, (u) = Fx(u),

n—oo

for every point u at which F'x(u) is continuous. This is denoted by X, % X. Note that F ', (u) is
the distribution function for X,,, and F'x(u) is the distribution function for X.

2.2 CONVERGENCE IN PROBABILITY

A sequence of random variables X, X», ... converges in probability to a random variable X if for
alle > 0,
lim P(|X,, — X| >¢) =0.

n—oo



2.3 ReraTiONsHIPS BETWEEN MoDEs oF CONVERGENCE
'There are several important points to note:
* Convergence in probability implies convergence in distribution.
* Convergence in distribution does not always imply convergence in probability.

* If X, converges in distribution to a constant z, then X, also converges in probability to x.
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