Example Use of SITATION

Mark S. Daskin

Modified for IEOR151, UC Berkeley, Fall 2013

What is SITATION?

Software to solve location problems

- Set covering
- P-median
- Maximal Covering
- Uncap. Fixed charge
- P-center
- Partial covering P-center
- Partial covering Set covering
- Covering-Median Tradeoff

Options include

- Forcing sites in/out of solution
- Different solution algorithms
 - Heuristic
 - Improvement
 - Lagrangian relaxation in branch and bound (optimal)
- Mapping
- Reporting
- Manual facility exchanges (for some objectives)

Problem to be solved (P-median)

- Minimize the demand weighted total distance (or average distance)
 - Using 10 facilities
 - To serve the 150 largest demands in the continental US

Double click on the SITATION Class 58019.exe software. This will load the software. You will see an ABOUT box for about 2-3 seconds followed by the main menu

Here is the main menu

- First you have to load the dataset you want to load.
- Click on <u>Load</u>
 Data

To load the data

First tell SITATION what kind of distances you are using

- Euclidean (straight line)
- Great Circle (shortest distance on a sphere)
- Manhattan (right angle)
- Network
- Click on <u>GREAT</u> CIRCLE

Now

SITATION Load Data Form	
-Specify Distance Metric-	Begin by specifying the distance metric
Euclidean	
Great Circle	
O Manhattan	
O Network	
Specify <u>D</u> emand File	Then specify the demand file name
ज्य जि	Specify Weight On Demand Set 1
	Then encode additional conditate sites if desired
Specify Candidate <u>S</u> ites	i nen specity additional candidate sites il desired
Dist. File Creation	Then specify how distances will be obtained
Compute Distances	
Read Distance File	
Specify Distance File	Next specify the name of the distance file
	. Finally aliab base to load the data
Egit and Load Data	Finally click here to load the data
Cancel	Or Click here to cancel

Click on Specify <u>Demand File</u>

Now tell it which file to read

Open				? ×
Look jn: 🔂 ur	nzippedFiles	-	🛃 🖻	*
 ■ Europe150.g ■ City1990.grt ■ 150city.grt ■ Sortcap.grt 	rt			
File <u>n</u> ame:				<u>O</u> pen
Files of <u>type</u> :	Great Circle Distance Data	File		Cancel

- Either double click on a file name or type the file name into the box labeled File <u>name</u> and then click Open
- Double click on 150city.grt in this example

Basic input file format

Demand 2 is usually ignored, but you can take a weighted sum of Demand 1 and Demand 2 if you want to do so

Now tell it how to get the distances

SITATION Load Data Form

Specify Distance Metric-	Begin by specifying the distance metric
O Euclidean	File to Read = 150city.grt
Great Circle	150 Nodes in file with names
Manhattan	
Network	
Specify <u>D</u> emand File	Then specify the demand file name
Line 1 (Dem. Node Fil	e) = 1 73.94548 40.67054 7322564 💻
I F	Specify Weight on Demand 1 (W=1)
Specify Candidate <u>S</u> ites	Then specify additional candidate sites if desired
Dist. File Creation	Then specify how distances will be obtained
<u> Read Distance File </u>	
Specify Distance File	Next specify the name of the distance file
E <u>x</u> it and Load Data	Finally click here to load the data
<u>C</u> ancel	Or Click here to cancel

You can either have SITATION compute the distances or you can give it a file name containing the actual distances. Most of the time I let it compute the distances

 In this example click on Compute Distances

Now you are almost done loading the

data

SITATION Load Data Form	
Specify Distance Metric	Begin by specifying the distance metric
O <u>E</u> uclidean	File to Read = 150city.grt
Great Circle	150 Nodes in file with names
C Manhattan	
O Wetwork	
Specify <u>D</u> emand File	Then specify the demand file name
Line 1 (Dem. Node Fil	e) =
al	
	Specify Weight on Demand 1 (W=1)
	Then specify additional candidate sites if desired
Specify Candidate Sites	
Dist. File Creation	Then specify how distances will be obtained
C Road Distances	Check to Use Kilometers
Specify Distance File	Next specify the name of the distance file
E <u>x</u> it and Load Data	Finally click here to load the data
Cancel	Or Click here to cancel

If you want the distances computed in kilometers instead of the default of miles, click on the box asking it to use kilometers.

Note that the labels throughout SITATION will still read miles even though distances are in km.

We will NOT do this in this example

Also note

SITATION Load Data Form

Specify Distance Metric	Begin by specifying the distance metric
O <u>E</u> uclidean	File to Read = 150city.grt
Great Circle	150 Nodes in file with names
O <u>M</u> anhattan	
Network	
Specify <u>D</u> emand File	Then specify the demand file name
Line 1 (Dem. Node Fil	e) = 1 73.94548 40.67054 7322564 💻
▼	
	Specify Weight on Demand 1 (W=1)
Specify Candidate <u>S</u> ites	Then specify additional candidate sites if desired
Dist. File Creation © Compute Distances	Then specify how distances will be obtained
C <u>R</u> ead Distance File	Check to Use <u>K</u> ilometers
Specify Distance File	Next specify the name of the distance file
E <u>x</u> it and Load Data	Finally click here to load the data
<u>C</u> ancel	Or Click here to cancel

 SITATION tells you the name of the file it will read and the number of nodes to be read.

Finally,....

SITATION Load Data Form

Specify Distance Metric-	Begin by specifying the distance metric
O Euclidean	File to Read = 150city.grt
Great Circle	150 Nodes in file with names
O Manhattan	
O <u>N</u> etwork	
Specify <u>D</u> emand File	Then specify the demand file name
Line 1 (Dem. Node Fil	e) = 1 73.94548 40.67054 7322564 🔺
.	
	Specify Weight on Demand 1 (W=1)
Specify Candidate <u>S</u> ites	Then specify additional candidate sites if desired
Dist. File Creation © Compute Distances	Then specify how distances will be obtained
© <u>R</u> ead Distance File	Check to Use <u>K</u> ilometers
Specify Distance File	Next specify the name of the distance file
E <u>x</u> it and Load Data	Finally click here to load the data
<u>C</u> ancel	Or Clicke to cancel

 To actually compute the distances and get back to the main menu, simply click on Exit and Load Data

But first ...

Confirm	×
?	Do you want to save distances?
	<u>Yes N</u> o

 SITATION will ask if you want to save the distances. You almost never do, so just click <u>No</u>

Now you are back at the Main Menu

You must now specify the coverage distance and a cost per mile even if the model to be run does not call for these values. They are used for reporting purposes

Click on <u>Set</u> Parameters

Now ...

Set Parameters
Use this form to set parameters. You must set the coverage distance and the cost per mile before you can run any algorithms.
Cost per <u>M</u> ile
Done and Run Cancel
<u>F</u> orce Nodes <u>I</u> nitialize Nodes

- Type in a coverage distance (e.g., 300)
- And a cost per mile (e.g., 1)

Now

Use this form to set parameters. You must set the coverage distance and the cost per mile before you can run any algorithms.

If you notice the <u>D</u>one and Run box is now available. Clicking this will allow you to go back to the Main Menu. You can also force sites in or out of the solution using the Force Nodes option. We will not do that in this example.

Click <u>Done and Run</u>

Also force nodes into/out of solution

Before getting back to the Main Menu

Informati	on 🔀
•	Cover List is 2240 Items Long
	OK

- SITATION tells you how large the cover list is. This is just for information purposes and you can usually ignore it.
- Click OK

SITATION will let you run either single or multiple objective (Tradeoff Curve) problems. We want a single objective problem (the P-median problem) so click on **Run Models**

First you must tell SITATION which problem to solve

un Models Form		
Select a Problem to Solve		
○ Ma <u>X</u> imum Covering	O Set Covering	PArtial P-Center
○ P-Median	O <u>P</u> -Center	Integrated In <u>V</u> /Loc (SCD) Model
O Uncoacitated <u>Fixed Charge</u>	Par <u>T</u> ial Set Covering	
		Click on the
		problem to be
		solved. In our
		case we want
		the P-median
		problem
	[]	Quit and Bun
	<u></u>	

Problem available: P-Median

P-median – minimize the demand weighted total distance by locating a fixed number of facilities

IP Formulation

- h_i: demand at customer i
- D_{ii}: distance between customer i and site j
- P: number of facilities
- x_i: 1, if we locate at site j; 0, otherwise
- y_{ij}: 1, if customer i is served by site j; 0, otherwise

P-Median Problem

➤IP Formulation

$$\min \sum_{j} \sum_{i} d_{ij} h_{i} y_{ij}$$

st.

$$\sum_{j} x_{j} = p$$

$$y_{ij} \le x_{j}, \forall i, j$$

$$\sum_{j} y_{ij} = 1, \forall i$$

$$x_{j}, y_{ij} binary$$

Other Problems available

- Maximal covering maximize the number of covered demands in the specified coverage distance with a fixed number of facilities
- Uncapacitated fixed charge minimize the sum of the fixed costs and demand weighted transport costs

And

- Set covering find locations of the minimum number of facilities needed to cover all demands within the specified coverage distance
- P-center find locations of a user-specified number of facilities to minimize the coverage distance needed to cover all demands
- Partial set covering same as set covering but the model can exclude (not cover) a user-specified number of nodes or fraction of the total demand

And

- Partial P-center like the P-center except that the model will allow a user-specified number of nodes or fraction of demand to be outside the reported coverage distance
- Inventory/Location (SCD) model find the DC locations, market assignments to DCs and DC inventory policy to minimize fixed DC costs, inventory costs at the DC, shipment costs to markets and shipment costs from plants to DCs

How do you want to solve the problem?

n Models Form		
Select a Problem to Solve		
MaXimum Covering	Set Covering	PArtial P-Center
P- <u>M</u> edian	O P-Center	Integrated In <u>V</u> /Loc (SCD) Model
O Uncapacitated Fixed Charge	Par <u>Tial Set Covering</u>	
Select an Algorithm		
О <u>М</u> уоріс	O Neighborhood	C Gene <u>l</u> ic Algorithm
Exchange	C Lagrangian Relaxation	
	Cancel	Quit and Bun
	Cancel	Quit and Bun

 You must now tell SITATION which of several algorithms to use to solve the problem. In general, you should use
 Lagrangian Relaxation.
 This embeds LR in branch and bound and guarantees optimal solutions.

Specify the number to locate

Tell the model how many sites to locate. For some models (e.g., the uncapacitated fixed charge problem, specifying -1 tells SITATON to find the best number) Type 10 in the indicated box

Now...

Select a Problem to Solve © Set Covering © PArtial P-Center © P-Median P-Center © Integrated Inty/Loc (SCD) © Uncapacitated Fixed Charge © Partial Set Covering © GeneTic Algorithm © Myopic Neighborhood © GeneTic Algorithm © Exchange © Lagrangian Relaxation © Integrated Inty/Loc (SCD)	
Makimum Covering Set Covering PArtial P-Center P-Median P-Center Integrated InW/Loc (SCD) Uncapacitated Fixed Charge Partial Set Covering Select an Algorithm Myopic Neighborhood Myopic Neighborhood GeneTic Algorithm Exchange Lagrangian Relaxation Integrated InW/Loc (SCD)	
 P-Median P-Center Integrated InV/Loc (SCD Uncapacitated Fixed Charge Par[jel Set Covering Select an Algorithm Myopic Neighborhood Gene_ic Algorithm Exchange Lagrangian Relaxation 	
Uncapacitated Fixed Charge Par[jal Set Covering Select an Algorithm Myopic Myopic Neighborhood Exchange Lagrangian Relaxation Number to Locate 10 View and Set Lagrangian Options Cancel Quit and Run	SCD) Mode
Select an Algorithm Myopic Neighborhood Exchange Lagrangian Relaxation Number to Locate 10 Yiew and Set Lagrangian Options Cancel Quit and Run	
Myopic Meighborhood GeneTic Algorithm Exchange Lagrangian Relaxation Number to Locate 10 Yiew and Set Lagrangian Options Cancel Quit and Run	
Exchange Eagrangian Relaxation Number to Locate 10 View and Set Lagrangian Options Cancel Quit and Run	
Number to Locate 10	
View and Set Lagrangian Options	

You can set the parameters of the Lagrangian Relaxation algorithm. This is a bit complex and we will **skip** it in this example.

 Do NOT click on <u>View and Set</u> Lagrangian Options

We are now ready to run the model

n Models Form			
Select a Problem to Solve	• • • •		
MaXimum Covering	Set Covering	PArtial P-Center	
P- <u>M</u> edian	P-Center	Integrated In <u>V</u> /Loc (SCD) Model	
Uncapacitated <u>Fixed Charge</u>	Par <u>F</u> ial Set Covering		
Select an Algorithm			
O <u>M</u> yopic	C <u>N</u> eighborhood	Gene <u>T</u> ic Algorithm	
🔿 <u>E</u> xchange	Contraction Lagrangian Relaxation		
	Number to Locate 10		

 By clicking on <u>Quit and Run</u> you ask SITATION to solve the problem

Lagrangian Progess Form

This form tells you information about the progress of the algorithm including the bounds on the solution

The total number of iterations

And

Lagrangian Progress Form MEDIAN OBJECTIVE					
Locations	10	B+B Nodes	1		
		Lag. Iterations	101		
Iterations	101	B+B Level	0		
Upper Bound	16,362,939,473.0				
Lower Bound	3,268,219,622.0				
Percent	400.6682955				
Alpha	1.000000000	123456789	Forced		
Failures	5			Nodes Info	
Step Size	17,412,498.129	60 00000000			
Branch and Bound Tree	EXCHANGE ON Below	100 000000000000000000000000000000000000		Time So Far 0.27	
Click to <u>A</u> bort Branching (A	nd Lose Results)			0% % of tree explored	

Information on the branch and bound tree

And ...

Which nodes are forced in (+) out (-) and undecided (0) at this point in the branch and bound algorithm

And ...

What percent of the branch and bound tree has been explored so far
When the algorithm finishes ...

 You should see this information box.

Click OK

You can now

- Display the results
- Map the results
- Manually modify the results for some objectives

First

We will display some results. Click on <u>Display Results</u>

You can now

Show Model Results Summary Summaries EXtended Summaries BASIC SUMMARY TABLES Basic Inputs and Outputs Forced Nodes Location Summary Extended Summary Tradeoff Curve Uncovered Node Summary Assigned Demand Summary Coverage Summary Number of Times Covered Graph Tradeoff Curve Dominated Nodes EXTENDED SUMMARY TABLES Save MaPping Data Save Solution to Disk SaVe Tradeoff Curve AssignMent to Sites FKed Costs @ Node to Facility Report COver Lists Ut[lization of Facility Sites Require Assignments Quit (return to main menu)

- Display a lot of results.
- First click on <u>Basic Inputs and Outputs</u>

This summary shows

Basic Results Form				
Name of Mair we	150city.grt			Last Report
Name of Ser Indary File	N/A			Navi Denat
Dist_nce File Name	N/A			
nitial File Name	N/A			<u>C</u> ancel
umber of Nodes	150 / 150	# Forced In	0	Print Form
Depand Fraction	1.0000	# Forced Out	0	LaGrangia, Param
Number of Facilities	10	# Initialized	0	
Coverage Distanc	300.00	Added Constant	N/A	
Solution Appro2	MEDIAN - LAGRANGIAN	_	IN/A	
Dominated rodes?	N/A			Root Node For ing
U per Bound	127.128922171	7,398,462,133	3.00	IN 10
ower Bound	127.128922171	7,398,462,133	3.00	OUT 140
Percent Differnce	0.0		Cost/Mile	1.0000000000
Iterations	444			
B+b Nodes	1			
		_		
Solution Time	1.04			

- A summary of the basic model inputs
- Model outputs including the problem and algorithm being solved, statistics on how long it took to solve it, and the objective function values

Go back

Basic Results Form			
Name of Main File	150city.grt		Last Report
Name of Secondary File	N/A		Neut Benet
Distance File Name	N/A		
Initial File Name	N/A		<u>C</u> ancel
Number of Nodes	150 / 150	# Forced In 0	Print Form
Demand Fraction	1.0000	# Forced Out 0	LaGrangian Param
Number of Facilities	10	# Initialized	
Coverage Distance	300.00	Added Constant N/A	
Solution Approach	MEDIAN - LAGRANGIAN	N/A	
Dominated Nodes?	N/A		Root Node Forcing
Upper Bound	127.128922171	7,398,462,133.00	IN 10
Lower Bound	127.128922171	7,398,462,133.00	OUT 140
Percent Differnce	0.0	Cost/Mile	1.0000000000
Iterations	444		
B+B Nodes	1		
Colution Time	1.04		

 Once you have studied this report click <u>Cancel</u> to return to the menu of reports

Now see where you locate

Click on <u>Extended</u> Summary to see where SITATION located facilities

Extended Summary

Extended Location Summary

# =>	Node #	X-Loc	Y-Loc	Coverage	Name	
1 ==>	1	73.95	40.67	14,613,185	New York	NY
2 ==>	2	118.41	34.11	9,401,537	Los Angeles	CA
3 ==>	3	87.68	41.84	8,580,904	Chicago	IL
4 ==>	4	95.39	29.77	5,682,877	Houston	TX
5 ==>	49	97.34	37.69	2,489,089	Wichita	KS
6 ==>	51	111.74	33.42	2,479,929	Mesa	AZ
7 ==>	91	122.46	47.25	1,307,438	Tacoma	WA
8 ==>	94	122.00	37.53	3,601,914	Fremont	CA
9 ==>	101	81.37	28.50	2,398,526	Orlando	FL
10 ==>	110	85.26	35.07	3,947,338	Chattanooga	TN
Fotal L Percent C	overed D Covered D	emands [51,74 Demands [88,90	093714			
verage W	eighted l	Distance 127.1	28922 🗲			
Average (Covered I	Distance 99.08	385689	Avera	ge Uncovered Distance	351.917820
Fixed Cost	\$1,000,0	000	Mileage C	ost \$7,398,462,133	Total Cost	\$7,399,462,133
	L	ast Report	Next <u>R</u> eport	<u>C</u> ancel	<u>Print Form</u>]

 This tells you where you locate facilities, the number of covered demands, the % of demands covered, the average weighted distance, and the total cost

And the verdict is...

Extended Location Summary

# =>	Node #	X-Loc	Y-Loc	Coverage	Name	
1 ==>	1	73.95	40.67	14,613,185	New York	NY
2 ==>	2	118.41	34.11	9,401,537	Los Angeles	CA
3 ==>	з	87.68	41.84	8,580,904	Chicago	IL
4 ==>	4	95.39	29.77	5,682,877	Houston	TX
5 ==>	49	97.34	37.69	2,489,089	Wichita	KS
6 ==>	51	111.74	33.42	2,479,929	Mesa	AZ
7 ==>	91	122.46	47.25	1,307,438	Tacoma	WA
8 ==>	94	122.00	37.53	3,601,914	Fremont	CA
9 ==>	101	81.37	28.50	2,398,526	Orlando	FL
10 ==>	110	85.26	35.07	3,947,338	Chattanooga	TN
Total C Percent C Average W Average C Fixed Cost	covered De covered De eighted Di Covered Di \$1,000,000	emands 51,74 emands 88.90 istance 127.1 istance 99.08 00	2,169 93714 28922 85689 Mileage I Next <u>R</u> eport	Avera Cost \$7,398,462,133	ge Uncovered Distanc Total Cos Print Form	e 351.917820 st \$7,399,462,133

 Note that the average weighted distance should be 127.13 miles if you solved this correctly

And now...

ŧ	=>	Node #	X-Loc	Y-Loc	Coverage	Name	
1	==>	1	73.95	40.67	14,613,185	New York	NY
2	==>	2	118.41	34.11	9,401,537	Los Angeles	CA
з	==>	3	87.68	41.84	8,580,904	Chicago	IL
4	==>	4	95.39	29.77	5,682,877	Houston	TX
5	==>	49	97.34	37.69	2,489,089	Wichita	KS
6	==>	51	111.74	33.42	2,479,929	Mesa	AZ
- 7	==>	91	122.46	47.25	1,307,438	Tacoma	WA
8	==>	94	122.00	37.53	3,601,914	Fremont	CA
9	==>	101	81.37	28.50	2,398,526	Orlando	FL
10	==>	110	85.26	35.07	3,947,338	Chattanooga	TN
Ver	age C	overed D	istance 99.00	385689	Avera	ge Uncovered Distance	351.917820
ixed	Cost	\$1,000,0	00	Mileage Cost	\$7,398,462,133	Total Cost	\$7,399,462,133
		La	ast Report	Next <u>R</u> eport	<u>C</u> ancel	<u>Print Form</u>	

After studying this report click <u>Cancel</u>

Show the number of nodes covered X times

Click on <u>Number</u> of Times Covered

This report shows

age summary	у нероп		
No. Times	No. Nodes	Number of Demands	Percent Coverage
0	25	6,454,361.000	11.0906
1	115	48,981,601.000	84.1658
2	10	2,760,568.000	4.7435
TOTAL	150	58,196,530.000	100.0000
	88.9	094 PERCENT OF DEMANDS	S COVERED
La	ist Report	Next <u>R</u> eport	cel <u>Print Form</u>

That in this solution 25 nodes (and 6,454,361 demands) are not covered at all, 115 nodes are covered once and 10 are covered twice

And now

When you are done looking at this click
<u>Cancel</u>

Now find out how demands are assigned to facilities

 Click on AssignMent to Sites

Assignment to Sites

Assignment of Demands to Sites

Demand Area	Facility Site	Distance	Covered?	Demand	Dem*dist	
1	1	0.0	YES	7,322,564	0	
2	2	0.0	YES	3,485,398	0	
3	3	0.0	YES	2,783,726	0	
4	4	0.0	YES	1,630,553	0	
5	1	78.0	YES	1,585,577	123,675,006	
6	2	116.0	YES	1,110,549	128,823,684	
7	3	238.0	YES	1,027,974	244,657,812	
8	4	224.0	YES	1,006,877	225,540,448	
9	51	21.0	YES	983,403	20,651,463	
10	4	189.0	YES	935,933	176,891,337	
11	94	17.0	YES	782,248	13,298,216	
12	1	170.0	YES	736.014	125.122.380	•
		Total de	COVERAG mand weighte MAXIMUM	E DISTANCE = 3 ed distance = 7 DISTANCE = 5	00.00 7,398,462,133.00 509.00	
		Last Report	Next <u>R</u> epo	rt <u>C</u>a	ncel <u>Print Form</u>	

This shows which facility is assigned to serve each demand area, the distance between them, whether the demand area is covered, the demand there, etc.

Assignment to Sites

Assignment of Demands to Sites

 As well as the maximum assigned distance and the total demand weighted distance

Go back

Assignment of Demands to Sites

Demand Area	Facility Site	Distance	Covered?	Demand	Dem*dist	
1	1	0.0	YES	7,322,564	0	
2	2	0.0	YES	3,485,398	0	
3	3	0.0	YES	2,783,726	0	
4	4	0.0	YES	1,630,553	0	
5	1	78.0	YES	1,585,577	123,675,006	
6	2	116.0	YES	1, 110, 549	128,823,684	
2	3	238.0	YES	1,027,974	244,657,812	
8	4	224.0	YES	1,006,877	225,540,448	
9	51	21.0	YES	983,403	20,651,463	
10	4	189.0	YES	935,933	176,891,337	
11	94	17.0	YES	782,248	13,298,216	
12	1	170.0	YES	736.014	125.122.380	•
		Total de	COVERAG mand weighte MAXIMUM	E DISTANCE = 3 ed distance = 7 DISTANCE = 5	00.00 1,398,462,133.00 509.00	
		Last Report	Next <u>R</u> epo	ort Ca	ncel <u>Print Form</u>	

Click on <u>Cancel</u> to go back to the reports menu

And so on

t how Model Results §ummary Summaries E⊻tended Summari	es	
E	BASIC SUMMARY TABLES	
Basic Inputs and Outputs	<u>F</u> orced Nodes	Location Summary
Extended Summary	Tradeoff Curve	Uncovered Node Summary
Assigned Demand Summary	<u>C</u> overage Summary	<u>N</u> umber of Times Covered
<u>G</u> raph Tradeoff Curve	Dominated Nodes	
EX	TENDED SUMMARY TAB	LES
Save Solution to Dis <u>K</u>	Sa <u>V</u> e Tradeolf Curve	Save Ma <u>P</u> ping Data
Assign <u>M</u> ent to Sites	Fi <u>X</u> ed Costs	Over the second seco
C <u>O</u> ver Lists	Ut[lization of Facility Sites	<u>R</u> equire Assignments
	Quit (return to main menu)	

There are many other reports, graphs (for some problems) and options to save results.
Experiment with them. They should be self explanatory.

Go back to the Main Menu

To get back to the main menu, click Quit (return to main menu)

Now we can Map the solution

Click on <u>Map Results</u>

Tell it what the border file is

- If you have a file giving the coordinates of the border of the region under study, click <u>Yes</u>; otherwise click <u>No</u>
- Click <u>Yes</u> now

Tell it which file to read

Input the nam	ne of the border	file				?×
Look jn: 🔂	unzippedFiles		-		Ĕ	
USAData.I	brd					
						_
						_
		•				_
, File name:						Open
-						<u></u>
Files of type:	Border File			•		

Double click on the name of the desired border file

Here is the map

Map of the solution

- This shows the locations of the facilities and the demand nodes assigned to each facility
- Click on option <u>2</u> Show Names to see the facility names

Here we are

Here are the names. Other options let you change what is displayed on the map

Zoom in

To zoom in, drag the mouse from top left to bottom right of the region to zoom on

Zoomed map

Click on <u>Show all names</u> to label all sites

Here are all the city names

- Cities connected to facilities by red lines are within the coverage distance
- Cities connected to facilities by blue lines are further than the coverage distance

Zoom out

To return to the original map, drag a box from the lower right to the upper left

Get rid of city names

Click on <u>Blank</u> to get rid of the city names

Now see other maps

Click on <u>%</u> Demand to see the relative demands

Map of relative demands

- Note the high bars at New York and Los Angeles
- Now click <u>@</u>Coverage

Coverage map

This map draws a line between any pair of cities that are within the coverage distance of each other.

Go back

Map of the solution

Click on <u>\$ Normal</u> to see the map of the solution again.

Go back again...

Now try exchanging sites

- Click on Exchange Sites to manually change the solution.
- Note that this option is not available with all objectives.

ist t	of Facilities					
1	LOCATION	73.95	40.67	New York	NY	▲
2	LOCATION	118.41	34.11	Los Angeles	CA	
3	LOCATION	87.68	41.84	Chicago	IL	
- 4	LOCATION	95.39	29,77	Houston	TX	
5	ALLOWED	75.13	40.01	Philadelphia	PA	
6	ALLOWED	117.14	32,81	San Diego	CA	
- 7	ALLOWED	83.10	42.38	Detroit	MI	
8	ALLOWED	96.77	32,79	Dallas	TX	
9	ALLOWED	112.07	33.54	Phoenix	AZ	
10	ALLOWED	98.51	29,46	San Antonio	TX	
11	ALLOWED	121.85	37.30	San Jose	CA	
12	ALLOWED	76.61	39.30	Baltimore	MD	
less	age Area					
ess	age Area					
less	age Area					
ess Add	age Area	<u>E</u> xchange	2 Sites	<u>⊺</u> ry and Do All Subs.		
	age Area Site to Solution	<u>E</u> xchange <u>F</u> ind Best E	2 Sites xchange			

In this example, we will see what happens if we locate in Philadelphia instead of New York

Click
<u>E</u>xchange 2
Sites
Add Philadelphia

Exchange Facilities Form List of Facilities ALLOWED 75.13 40.01 Philadelphia PA ALLOWED 117.14 32.81 San Diego CA. ALLOWED 83.10 42.38 Detroit Ph. ALLOWED 96.77 32.79 Dallas ТX ΑZ 9 ALLOWED 112.07 33.54 Phoenix 10 ALLOWED 98.51 29.46 San Antonio ALLOWED 121.85 37.30 San Jose CA 12 ALLOWED 76.61 39.30 Baltimore MD 13 ALLOWED 86.15 39.78 Indianapolis (remailN 14 ALLOWED 122.55 37.79 San Francisco CA ALLOWED 81.66 30.33 Jacksonville (remaiFL 82.99 16 ALLOWED 39.99 Columbus OH ¥. Message Area Pick node to Add Cancel Exchange

Limited # of Exchanges

Click on Philadelphia

Close

Tell SITATION to add it

Exchange Facilities Form List of Facilities ALLOWED 75.13 Philadelphia PA 5 40.01 ALLOWED 117.14 32.81 San Diego CA 6 ALLOWED 83.10 42.38 Detroit MI 8 96.77 Dallas ALLOWED 32.79 TХ ALLOWED 112.07 33.54 Phoenix ΑZ 9 ALLOWED 98.51 29.46 San Antonio TХ ALLOWED 121.85 37.30 San Jose 11 CA. 12 ALLOWED 76.61 39.30 Baltimore MD. 13 ALLOWED 86.15 39.78 Indianapolis (remailN 14 122.55 37.79 ALLOWED San Francisco CA ALLOWED 81.66 30.33 Jacksonville (remaiFL 16 ALLOWED 82.99 39.99 Columbus OH Message Area Pick node to Drop Pick node to Add Cancel Exchange Limited # of Exchanges Close Click on Pick node to Add

Tell SITATION which node to

remove

	change Facilities Form					
List of Facilities						
1	LOCATION	73.95	40.67	New York	NY	
2	LOCATION	118.41	34.11	Los Angeles	CA	
3	LOCATION	87.68	41.84	Chicago	IL	
- 4	LOCATION	95,39	29.77	Houston		
49	LOCATION	97.34	37.69	Wichita	KS	
51	LOCATION	111.74	33,42	Mesa	AZ	
91	LOCATION	122,46	47.25	Tacoma	WA	
94	LOCATION	122.00	37.53	Fremont	CA	
101	LOCATION	81.37	28.50	Orlando	FL	
110	LOCATION	85.26	35.07	Chattanooga	TN	
Mace	ano Aroa					
mess	aye Area					
				Pick node to Add	Pick node to Drop	Cancel Exchange
				Linear and Egg	TION HOUSE TO DIOD	
			0.01	T 10 100 1		
	Site to Solution	Exchange	2 Sites	Lity and Do All Subs.		
<u>A</u> dd :		Ensurange				
<u>A</u> dd		Entenage				

 Highlight New York (it should already be highlighted)

Tell it to delete New York

ist c	of Facilitie	5				
101 0		73.95	40.67	New York	NY	
2	LOCATION	118,41	34.11	Los Angeles	CA	
3	LOCATION	87.68	41.84	Chicago	IL	
4	LOCATION	95.39	29.77	Houston	TX	
49	LOCATION	97.34	37.69	Wichita	KS	
51	LOCATION	111.74	33.42	Mesa	AZ	
91	LOCATION	122.46	47.25	Tacoma	WA	
94	LOCATION	122.00	37.53	Fremont	CA	
101	LOCATION	81.37	28,50	Orlando	FL	
110	LOCATION	85.26	35.07	Chattanooga	TN	
less	age Area					
1ess	age Area					
4ess	age Area			Pick node to <u>A</u> dd	Pick node to <u>D</u> rop	<u>C</u> ancel Exchange
4ess Add	Site to Solution	Exchange	2 Sites	Pick node to <u>A</u> dd	Pick node to <u>D</u> rop	<u>C</u> ancel Exchange

Click on Pick node to Drop

Now

- SITATION will show you a message telling you the impact of the change (in this case, among other impacts, the average distance will go up by 6.45 miles)
- Tell SITATION whether you want to make the change
- Click <u>Yes</u> in this case

Now

hange F	acilities Form					
List o	f Facilities			-		
1	ALLOWED	73.95	40.67	New York	NY	
2	LOCATION	118.41	34.11	Los Angeles	CA	
3	LOCATION	87.68	41.84	Chicago 🔒		
- 4	LOCATION	95.39	29.77	Houston 🦯	ТХ	
5	LOCATION	75.13	40.01	Philadelphia	PA	
6	ALLOWED	117.14	32.81	San Diego	CA	
7	ALLOWED	83.10	42.38	Detroit	MI	
8	ALLOWED	96.77	32.79	Dallas	TX	
9	ALLOWED	112.07	33,54	Phoenix	AZ	
10	ALLOWED	98.51	29,46	San Antonio	TX	
11	ALLOWED	121.85	37.30	San Jose	CA	
12	ALLOWED	76.61	39.30	Baltimore	MD	
<u>A</u> dd S	Site to Solution	<u>E</u> xchange	2 Sites	Iry and Do All Subs.		
<u>D</u> elete S	Site from Solution	<u>F</u> ind Best E	kchange	Limited # of Exchanges		<u>C</u> lose

 Look carefully and there is now a facility in
 Philadelphia and no facility in New York

 Click <u>Close</u> to go back to the Main Menu

You could now

🔀 SITATION (Facility	Location Software) by Daskin	_ 🗆 ×
Citat	ion al rin al mo	
Suai	ton Main Menu	
© Cop Northwe	yright, 1998 - 2002, Mark S. Daskin, A. E.	
HURIN	Sterr Oniversity, Evension, iE Cocoo	
Ahaut	Display the ABTULL has be SUATH	au dest
Hida Hinta	Historial backbarry Chattan Harr	
nide <u>m</u> ints	TING WILDE SHOWLS CREEK OF FIGE	See 1
Discos		
Print Setup	You can set up the punter at any t	ne
Load Data	First you have to EDAD the data?	
	*	369
Set Parameters	Then you have to SET some parage	elers a
Bun Models	Next you can BUN the models	
Tradeoff Curves	A upperate TRADEGEE curves	107
Tiadeon Curres		4
Diaplay Posulta		
Display Results	Ther put car product. The results	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
<u>Map Results</u>	Ur MAP the results	the for
		0.200
EXchange Sites	Ur EXCHANGE Sites Manually	
Exit SITATION	You can always EXIT SITATION	
Photo: © Copyright, Marl	k S. Daskin, 2000	

- Display the results of these manual changes or map the new solution, etc.
- But we will skip all that.
 You should now know how to do all of that.

Now we can get out of SITATION

SITATION (Facility	Location Software) by Daskin	
0:4-4		
Sua	ion Main Menu	
© Cop Northw	yright, 1998 - 2002, Mark S. Daskin, 🧼 estern University, Evanston, 🎚 60208	and a series
<u>A</u> bout	Display the ABOUT box for SHA	
	THE MAN	A. Colt
Hide <u>Hi</u> nts	Hints will be shown Elick to Ha	
Print Catura	V	1
	rou can set up the panter at any	
the state of the		Ser Set
Load Data	First you have to EDAD the difa	
C + D - + +		
<u>Set Parameters</u>	Then you have to SEA some para	meters
Run Models	Next you can RUN the models	
	and a second	
<u>Iradeoff Curves</u>	Or generate TRADEOFF curves	
Display Results	Then you can DISPLAY the resul	S
Man Results	Dr. MAR the results	
<u>Map results</u>	OT MAP WE LESUIN	Section 2
EXchange Sites	Or EXCHANGE Sites Manually	
Exit SITATION	You can always EXIT SITATION	
Photo: © Copyright, Mar	k S. Das. 2000	

Click <u>Exit</u> SITATION

Again

 To prevent you from inadvertently leaving before you want to, SITATION asks you to confirm that you really want to exit

Click <u>Yes</u>

And finally

Click OK to return to Windows

SITATION is (hopefully)

- Relatively easy to understand if you know a bit about location models.
- Relatively bullet proof. It should be very hard to crash it.
- Try other options on your own

And note

 You can print any of the reports, graphs or maps just by clicking on the appropriate Print button.

- Have fun using SITATION. Experiment with
 - Forcing facility sites into or out of the solution
 - Other objective functions
 - Etc.

Exercise

You are working for a global chain company which just starts to expand their market into USA. They are planning to build 10 plants in USA. There are 150 candidate cities to choose from. You are given the demand information at each city (Please see 150city.grt file.) The current goal of the company is to minimize the demand weighted total distance since transportation expenses are the key factor to the company profits. Assume now you want to exclude New York and Los Angeles as candidate sites of your facility due to the consideration of the high probability of natural disaster. Please use Sitation software to find the best locations and show the results in map.