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1. Two players A and B play a game in which they take turns flipping a coin. A starts the game,
and B plays second. e first player to flip a heads wins.

(a) Compute the probability that A wins if the coin is fair – meaning the probability of heads
is 1/2. (2 points)

We use ai and bi to denote the i-th flip of playersA andB, respectively. Let h and t denote
heads and tails. Note that

P(A wins) = P(a1 = h) + P(a1 = t and b1 = t and A wins)
= P(a1 = h) + P[A wins|a1 = t and b1 = t] · P(a1 = t and b1 = t)

= P(a1 = h) + P(A wins) · P(a1 = t) · P(b1 = t)

= 1/2 + 1/4 · P(A wins).

Solving for P(A wins) gives the answer: P(A wins) = 2/3.

(b) Compute the probability that A wins if the coin is biased, and the probability of heads is
p such that p > 0. (1 point)

From the derivation in the previous part of the question, it holds that

P(A wins) = P(a1 = h) + P(A wins) · P(a1 = t) · P(b1 = t) = p+ (1− p)2 · P(A wins).

Solving this gives P(A wins) = p/(1− (1− p)2) = 1/(2− p).

(c) For what values of p does A have a better chance of winning than B? (1 point)

A has a better chance of winning if P(A wins) > 1/2. is occurs when

1/(2− p) > 1/2 ⇔ 2 > 2− p

⇔ p > 0.

us, A always has a better chance of winning if p > 0.
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2. Consider a disease that is found in 0.1% of the population, with a test for this disease that gives
a correct diagnosis 90% of the time. Suppose a person is randomly chosen from the population
and given a first test. If the first test is positive, then the person is given a second test.

(a) Compute the probability that the first test is positive given that the person is infected with
the disease. (1 point)

Direct computation gives P[One Positive Test|Infected] = 0.9.

(b) Compute the probability that both tests are positive given that the person is infected with
the disease. (1 point)

Direct computation gives P[Two Positive Tests|Infected] = 0.92 = 0.81.

(c) Compute the probability that the person is infected given that the first test is positive. (2
points)

First note that

P(One Positive Test) = P[One Positive Test|Infected] · P(Infected)+
P[One Positive Test|Not Infected] · P(Not Infected)

= 0.9 · 0.001 + 0.1 · 0.999.

Using Bayes’ rule gives

P[Infected|One Positive Test] = P[One Positive Test|Infected] · P(Infected)
P(One Positive Test)

=
0.9 · 0.001

0.9 · 0.001 + 0.1 · 0.999
≈ 0.0089.

(d) Compute the probability that the person is infected given that both tests are positive. (2
points)

A similar computation gives P[Infected|Two Positive Tests] = 0.075.

3. Consider an airplane with maximum seating capacity of 100 passengers, and assume that the
airline company sells 110 tickets because each passenger has a 10% probability (independently
of other passengers) of not showing up for the flight. What is the probability that there are
enough seats for all passengers that show up for the flight? Hint: It is not necessary to mathe-
matically simplify the answer. (2 points)
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ere are enough seats if the number of passengers that show up is 100 or less (or the number
of passengers that do not show up is 10 or more), meaning

P(Enough Seats) =
∑100

k=0 0.1
110−k · 0.9k =

∑110
k=10 0.1

k · 0.9110−k.

Another characterization is through negation of events, specifically

P(Enough Seats) = 1−
∑110

k=101 0.1
110−k · 0.9k = 1−

∑9
k=0 0.1

k · 0.9110−k.

4. Suppose g(u) is twice continuously differentiable at u = θ, g′(θ) = 0, and g′′(θ) ̸= 0. If
√
n[Xn − θ]

d→ σN (0, 1), then show that n[g(Xn) − g(θ)]
d→ σ2 g

′′(θ)
2

χ2
1, where χ2

1 is a chi-
squared random variable with 1 degree of freedom. Hint 1: If Z is distributed according to
N (0, 1), then Z2 is distributed according to χ2

1. Hint 2: Use the Lagrange form of Taylor’s
eorem. (5 points)

Using Taylor’s eorem, there exists some ξ(u, θ) in between u and θ such that

g(u) = g(θ) + g′(θ)(u− θ) +
g′′(ξ(u, θ))

2
(u− θ)2.

But g′(θ) = 0 and so we can ignore the second term in the expression above. Now consider the
expression:

n[g(Xn)− g(θ)] = n
g′′(ξ(Xn, θ))

2
(Xn − θ)2.

We must have ξ(Xn, θ)
p→ θ since (i) ξ(u, θ) is in betweenXn and θ, and (ii)Xn

p→ θ. us, the
Continuous Mapping eorem implies that g′′(ξ(Xn, θ))

p→ g′′(θ). Again using the Continu-
ous Mapping eorem gives that n(Xn − θ)2

d→ σ2χ2
1 because of Hint 1 and the assumption

√
n[Xn − θ]

d→ σN (0, 1). Applying Slutsky’s theorem to n[g(Xn)− g(θ)] and using the inter-
mediate conclusions above gives the desired result.

5. Suppose
√
n[p̂− p]

d→
√

p(1− p)N (0, 1). If g(u) = 2 arcsin(
√
u), then compute the limiting

distribution of
√
n[g(p̂) − g(p)]. Note: e function g(u) in this case is what is known as a

variance stabilizing transformation. (3 points)

Note that g′(p) = 1/
√

p(1− p), and so using the Delta Method gives
√
n[g(p̂) − g(p)]

d→
N (0, 1).
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