
Learning-Based Model Predictive Control on a Quadrotor: Onboard
Implementation and Experimental Results

Patrick Bouffard, Anil Aswani, and Claire Tomlin

Abstract— This paper presents details of the real time
implementation onboard a quadrotor helicopter of learning-
based model predictive control (LBMPC). LBMPC rigorously
combines statistical learning with control engineering, while
providing levels of guarantees about safety, robustness, and
convergence. Experimental results show that LBMPC can learn
physically based updates such as the ground effect to an
assumed model, and how as a result LBMPC improves transient
response performance. We demonstrate robustness to mis-
learning. Finally, we demonstrate the use of LBMPC in an
integrated robotic task demonstration. The quadrotor is used
to catch a ball thrown with an a priori unknown trajectory.

I. INTRODUCTION

There has been interest in the use of small unmanned aerial
vehicles (UAVs) for security, surveillance/sensor networks
[1], and search-and-rescue [2] applications, and such vehicles
have even seen use in the recent rebel uprising in Libya
[3]. Due to these applications, simplicity of mechanical
design and maintenance, and desireable safety characteris-
tics, quadrotor helicopter UAVs are a popular choice among
researchers in control and robotics ([4], [5], [6], [7], [8]).

Recent results in the applications of learning techniques
to robotic systems (e.g., [9], [10]) suggests exploring how
they might integrate with control techniques; indeed this is
an active area of research [11]. Learning-Based Model Pre-
dictive Control (LBMPC) [12] is a new model-based control
strategy that also allows for online updates to the model to
improve performance, while maintaining certain guarantees
about safety, robustness, and convergence. LBMPC combines
aspects of learning-based control and model predictive con-
trol (MPC, [13]). In contrast to adaptive control techniques
[14], [15], the LBMPC based controller allows one to specify,
a priori, a model based on the known physical system with
uncertainty bounds. Like robust control, LBMPC can deal
with uncertainty directly, but also allows the designer to
specify performance objectives to optimize and explicitly
incorporates online model updates to further improve per-
formance. LBMPC is compatible with many learning tech-
niques; previous work has employed a modified Nadaraya-
Watson estimator with Tikhonov regularization [12] and a
semi-parametric regression estimator [16].

In this paper, we present details and experiments of an
implementation of LBMPC that runs in real time onboard
a quadrotor UAV with limited computing performance and

This research is supported by the NSF CPS ActionWebs project, the ONR
MURI SMARTS project, and by an NSERC fellowship (P. Bouffard).

A. Aswani, P. Bouffard, and C. Tomlin are with the Department of
Electrical Engineering and Computer Sciences, University of California,
Berkeley, USA

memory. A companion paper [17] explains the details of
the modifications from LBMPC as it is described in [12].
Here, we outline a control architecture that uses a modified
extended Kalman filter (EKF) to perform state estimates and
learn updated model parameters. The LBMPC formulates the
control problem as the solution of a convex optimization
problem.

Fig. 1. “Ball catching” experiment. The quadrotor, controlled using
LBMPC, is about to catch a ball. Video from the experiments can be viewed
online at http://eecs.berkeley.edu/~aaswani/LBMPC.

Experiments show LBMPC has similar computational
requirements to linear MPC, but can improve performance
by allowing the models used to be updated online. The
experiments demonstrate learning updates including the so-
called ground effect (increased aerodynamic lift when oper-
ating close to the ground) [18]. LBMPC provides robustness
against mis-learning; that is, even if the learning algorithm
is poorly designed or tuned, the formulation provides safety.
To demonstrate the precision control possible using LBMPC,
we program the quadrotor to catch balls (Fig. 1).

The paper is organized as follows. We begin with prelim-
inaries of notation, followed by mathematical models of the
system. Next, the LBMPC controller is introduced, and the
experimental apparatus is described. The paper concludes by
providing experimental results.

II. PRELIMINARIES

Here, we define the notation used in this paper. Vectors
are not typeset specially, but will be identified as such when
introduced (e.g., v ∈ R10). All vectors are column vectors,

and the transpose of a vector or matrix is denoted with a
superscript T (e.g., vT).

Variables that change at each discrete timestep have the
time index denoted by the subscript. However, in equations
describing the update of such a variable, a superscript +
on the variable indexed by time indicates the subsequent
time index of the variable. For example, v+ = 0.5v+ 0.1 is
equivalent to vi+1 = 0.5vi + 0.1.

Where a time-indexed variable is included without a
subscript, this refers the value of the variable at the “most
recent” timestep in a sense that should be clear from the
context. The notation ‖v‖2M denotes the quadratic form
vTMv. The subscript N, E, or D is added to vectors to
denote the vector component corresponding to the North,
East, or Down (though the compass directions should not be
interpreted literally) axis of an inertial frame, respectively.
Symbols with a dot above are the time derivative of that
symbol (e.g., ẋ = d

dtx).

III. MODELS

A. Quadrotor Vehicle Model

The basic principle of operation of a quadrotor helicopter
consists in the generation of net force and torque through
variation of the rotational speeds of the four rotors. Detailed
treatment of the dynamics of quadrotor motion can be found
in [4]. Here we assume a simplified model, that is more
suitable for an operating regime around steady hover.

The quadrotor’s position and orientation are expressed
in terms of a body-fixed frame with axes FB :=
{xB ,yB , zB}, with respect to an inertial frame with axes
FI := {xN ,xE ,xD}. Define the state of the system x =
[xN ẋN θ θ̇ xE ẋE φ φ̇ xD ẋD]

T ∈ R10, where (xN , xE , xD)
are the components of the vector from FI to FB , expressed
in FI , and ψ, θ, φ are the rotations (in radians) in a 3-2-1
(yaw-pitch-roll) Euler sequence taking FI to FB . We assume
that ψ is held fixed.

We assume that the closed-loop attitude dynamics (for
pitch and roll) can be approximated by a second-order
torsional inertia-spring-damper SISO system, with the com-
manded pitch/roll angle as input and the actual angle as
output. Based on empirical data from tests using step inputs,
we determined a transfer function model for the closed-
loop attitude dynamics of each axis of the form G(s) =

n0

(
s2 + d1s+ d0

)−1
. The pitch and roll dynamics are

decoupled and identical; this is supported by the empirical
data and vehicle symmetry.

For the translational degrees of freedom, we assume
decoupled axes for the lateral (horizontal; xN − xE plane)
motion. We assume a frictionless point mass model driven
by the quadrotor’s total thrust T along with acceleration
due to gravity (−g/m · xD), where g = 9.81 m/s2, m =
1.3 kg. The no-input dynamics in each translational degree
of freedom are simply a double integrator. The corresponding
discretized (time step ∆t) dynamics matrix is At = [1 ∆t

0 1].
We now combine the translational and attitude dynamics

for a given lateral axis (i.e. roll and y, pitch and x) to form

a 4-state linear (affine) discrete-time model for that axis:

x+
l = Alxl +Blul + kl

=

[
At BtCr
0 Ar

] [
xt
xr

]
+

[
0
Br

]
ur +

[
0
0

]
,

where At, Ar ∈ R2×2 are the discretized, linearized dynam-
ics matrices of the translational and rotational subsystems
respectively, Bt, Br ∈ R2×1 are the input maps of transla-
tional and rotational subsystems respectively, and kl ∈ R4×1

is a zero vector representing the nominal affine part of
the dynamics. Based on the step input testing and with
∆t = 0.025 s, the lateral dynamics are kl = 0 and

[Al|Bl] =

1 0.025 0.0031 0
0 1 0.2453 0
0 0 0.7969 0.0225
0 0 −1.7976 0.9767

∣∣∣∣∣∣∣∣
0
0

0.01
0.9921

 .
The vertical dynamics have no rotational component and

can be written as z+ = Atz + Bz + kz , where Bz =
−KT [∆t2

2 ∆t]
T (KT > 0 is an empirically-determined

thrust-to-command ratio) and kz = g [∆t2

2 ∆t]
T represents

the acceleration due to gravity. Finally, we combine the
discrete time models blockwise to obtain an overall discrete-
time linear-affine dynamics model,

x+ = Ax+Bu+ k + h(x, u) (1)
y = Cx+ ε (2)

where

A = blkdiag (Al, Al, Az) ∈ R10×10,

B = blkdiag (Bl, Bl, Bz) ∈ R10×3,

k =
[

0 0 kz
]T ∈ R10×1, C ∈ R5×10,

and C is a zero matrix except for unity entries such that y =
[xN θ xE φ xD]

T
+ ε. The input is the commanded attitude

and thrust u = [θs φs Ts]
T . The term h(x, u) represents

the unmodeled dynamics of the system. Thus the “nominal”
dynamics state update (the case in which h ≡ 0) is,

x+ = FN (x, u) := Ax+Bu+ k. (3)

The ε term represents measurement noise, assumed to be a
bounded stochastic quantity, i.i.d. at each timestep.

B. Model of a Ball in Free Flight

A key part of the ball catching experiment, is estimating
the ball’s future trajectory based on an estimate of its current
state. The trajectory of the ball in free flight is governed by
the action of gravity, drag due to air resistance, the Magnus
effect, buoyancy, and added (or “virtual”) mass [19], [20].
The gravity force is FG = mg · xD, and drag acts in a
direction opposite the ball’s instantaneous velocity V . The
magnitude of the drag force is proportional to the square of
the ball’s velocity FD = 1

2ρCD
V
‖V ‖ ‖V ‖

2, where CD is a
drag coefficient that is typically determined empirically.

The Magnus effect induces a force perpendicular to both
the velocity and the spin axis of the ball, thus causing the

its trajectory to curve. This force appears to have an effect
on our trajectory predictions, based on study of the ball’s
trajectory. However, a nonlinear EKF estimate that incor-
porated the Magnus effect did not converge fast enough to
provide accurate estimates, and subsequently we used a more
straightforward Luenberger observer—that has been proven
to converge [20]—with a model that neglects Magnus. The
buoyancy force and the “added mass” on the other hand, are
both small enough to neglect.

Let xb = [xb,N ẋb,N xb,E ẋb,E xb,D ẋb,D]
T represent the

3D position and velocity of the ball expressed in FI . The
discrete-time (time step ∆tb) dynamics update is

x+
b = Fb(xb) = blkdiag(Ab, A,Ab)xb

+
[

0 ∆tbFD,N 0 ∆tbFD,E
∆t2b

2 g ∆tb(g+FD,D)

]
,

where Ab =
[

1 ∆tb
0 1

]
, i.e., a discretized double integrator

in each axis. Note that we neglect the small contribution
of the drag force to the position update. We measure only
the position of the ball; the output equation is yb = Cbxb
where Cb is zero except for unity entries such that yb =
[xb,N xb,E xb,D]

T .

IV. CONTROL SYSTEM DESIGN

In this section we describe the design of the quadrotor
controller incorporating the LBMPC scheme. The overall
control architecture is composed of (i) estimation of the
vehicle state and learning of the unmodeled dynamics, and
(ii) an optimization-based procedure for performing closed-
loop control. Both are model-based: The state estimate uses
a model of the system to make predictions of the current
state based on the past state and input, and the optimization
problem uses a system model to determine the cost of
prospective control policies and to evaluate the result of those
policies over a finite planning horizon.

1) Vehicle State Estimation and Learning: We assume a
linear, time-varying oracle [12] Om : Rn × Rm → Rn,
parametrized by a vector of parameters β ∈ Rp, p = 12,
of the form Om(x, u) = F (β)x+H(β)u+ z(β), in which
F , H , and z are linear in the entries of β. The parameters
are constrained such that βmin,i ≤ βi ≤ βmax,i, i = 1, . . . , p.
The state update equation under the learned dynamics is then,

x+ = FO(x, u) := FN (x, u) +Om(x, u)

= (A+ F)x+ (B +H)u+ k + z. (4)

The parameters β = {β1, . . . , βp}, can be thought of as
“adjustments” to certain entries of the nominal dynamics
matrices. In what follows, we simply write F , H , and z
(dropping the explicit dependency on the parameters β).
Estimates of the parameters β̂ are determined jointly with
estimates x̂ of the state, using a variant of the extended
Kalman filter (EKF) in which convergence is guaranteed for
a model which is jointly nonlinear in the state and parameters
but individually linear in each of these [21]. We assume that
the parameters evolve according to β+ = β + µ where µ is

noise. The modified EKF is governed by the set of update
equations,

x̂+ = FO(x, u) + K̂ζ

P+
2 = (A+ F)P2 +MP3 − K̂ΞLT

P+
3 = P3 − LΞLT − δP3P

T
3 + Υ

β̂+ = bound(β̂ + Lζ)

Where L := PT2 C
TΞ−1 and M := ∂

∂β (Fx̂+Hu+ z).
Here, ζ = y−Cx̂ is the measurement innovation. The matrix
K̂ is a feedback matrix chosen such that A + F − K̂C is
exponentially stable for all possible β. The matrices P2 ∈
R10×12, Ξ ∈ R5×5, P3 ∈ R12×12, and Υ ∈ R12×12 are
the cross-covariance between state and parameter estimates,
the covariance of the parameter estimates, the measurement
noise, and the parameter noise respectively. The tuning
parameter δ > 0 improves the numerics. The bound function
clips each parameter to be within the specified limits.

A. LBMPC Design

At the heart of the LBMPC control scheme is the on-line
solution of a convex optimization problem—specifically, a
quadratic program (QP). At timestep m, we solve the QP,

min
c·,θ

p(x̃m+N) +
∑N−1
j=0 q(x̃m+j) + r(ǔm+j) (5)

s.t. x̃m = x̄m = x̂m, (6)
x̃m+i = FO(x̃m+i−1, ǔm+i−1), (7)
x̄m+i = FN (x̄m+i−1, ǔm+i−1), (8)

ǔm+i−1 = Kx̄m+i−1 + cm+i−1,

x̄m+i ∈ X , ǔm+i−1 ∈ U ,
x̄m+1 ∈ X 	D, (x̄m+1, θ) ∈ ω

for i ∈ {1, . . . , N} where N is the number of steps forward
in time over which the optimization is performed (i.e., the
“horizon”). The cost function (5) is the sum of final state
error cost p(x) = ‖x− xs‖2P , and intermediate step costs
on state q(x) = ‖x− xs‖2Q and input r(u) = ‖u− us‖2R.
The different notions of the state are indicated by marks
on the symbol; hence x (no marks) indicates the true state,
x̂ the estimated state, x̃ the predicted state incorporating
the oracle, and x̄ the predicted state using the nominal
model. The desired state is xs, and us is the steady-state
control that would maintain the state at xs, i.e. us solves
xs = FO(xs, us).

The matrices P , Q, and R are weights on the final state
error cost, the stage error cost and the stage control input
cost, respectively. The polyhedral sets X and U are bounded
and convex; they encode the allowable states and inputs,
respectively. These are typically expressed as sets defined by
half-space inequalities. For example, X = {x |Fxx ≤ hx}.
Note that, owing to the boundedness of β, X , and U , the
oracle is also bounded: Om(x, u) ∈ D for some bounded,
convex polytope D. The set ω is an approximation of the
maximal output admissible distubance invariant set [22] and
θ ∈ R3 is a parametrization of points that can be feasibly
tracked with a linear controller.

The solution {c∗i }
m+N−1
i=m to this QP encodes the

optimal—with respect to the cost function in (5)—sequence
of controls to apply to the system over the next N steps based
on the current parameter and state estimates. The actual
controls are the ǔ’s, (??) used to determine predicted oracle
states x̃ (7) used in the cost function and predicted states x̄
(8) used for constraint satisfaction.

From an implementation perspective, the key output of the
QP is only the first control of the sequence of N controls,
ǔm = Kx̂m + c∗m. Note that the feedback K serves to limit
the effects of model uncertainty [23]. This is the control that
is actually applied to the system; at the next iteration through
the control loop, the QP is solved once again with new
state estimates and new oracle dynamics based on updated
F,H, z matrices. While the above treats the salient points,
[17] goes into greater detail regarding the development of
the optimization problem.

V. EXPERIMENTAL SETUP

In this section we describe our experimental apparatus,
particularly the quadrotor vehicle used, our laboratory setup
including the method of sensing the quadrotor’s pose, as well
as the software architecture.

The main element of the system is a quadrotor UAV,
based on the “Pelican”, a vehicle system geared towards
research applications produced by Ascending Technologies.
As configured for these experiments, the overall vehicle
mass is 1.3 kg. Our quadrotor is equipped with an onboard
computer with a 1.6 GHz Intel Atom N270 CPU, 1 GB of
RAM, an 8 GB solid state (micro-SD card) disk, and wi-fi
communications.

The quadrotor is supplied with onboard electronics and
firmware that implement systems functionality as well as
closed loop control for attitude angles, and open loop control
of thrust running at 1 kHz on one of two ARM7 chips
on a proprietary board. This controller accepts θ, φ, ψ̇
and commands over a serial port interface; we issue these
commands at a rate of 40 Hz. The serial interface also
provides telemetry data, although this telemetry is used for
debugging/diagnostic purposes only in this work.

Experiments are conducted in a laboratory environment
equipped with a Vicon MX motion capture system. This
system tracks the 3D position of small retroreflective markers
using an array of cameras with nearinfrared illumination
strobes. Provided with a model of a rigid body equipped
with markers, it provides the full rigid-body position and
orientation of the quadrotor at a rate of 120 Hz. We use this
same system to obtain measurements of the 3D position of
the ball in the “ball catching” experiment.

A ground station laptop computer provides the ability to
control the quadrotor manually and initiate the automatic
modes of operation. The various computers are intercon-
nected on a local area network (LAN), with the onboard
computer communicating via WiFi. A one-way radio link
provides a safety backup and is required to arm the quadrotor
for flight.

The onboard computer runs Ubuntu Linux and a software
stack developed for quadrotor experimentation [24], which
uses the ROS (Robot Operating System [25]) framework.
The LBMPC control architecture runs entirely onboard the
quadrotor’s computer, including the QP solver. Most of the
software is implemented in C++, but the QP is solved
using LSSOL [26] (FORTRAN). We are able to achieve the
system’s nominal control period of 40 Hz with a horizon
of N = 15 steps with this solver; future investigations will
investigate performance using different solving formulations
[27], [28], [29].

VI. EXPERIMENTAL RESULTS

In this section, we describe the results of several exper-
iments that illustrate different aspects of the performance
using LBMPC, with particular emphasis on the benefits of
LBMPC over standard linear MPC.

A. Learning the ground effect

The ground effect is a well known aerodynamic effect in
which the vehicle is subject to additional lift when in the
vicinity of the ground. In helicopters, ground effect typically
has a non-negligible impact on lift force when the main rotor
is within 2 rotor diameters of the ground [18]. This effect
has also been noted in in other quadrotors [30], [31], [32].

In this experiment, the quadrotor was commanded to hover
at a specified height, out of the ground effect, and after some
time (at approx. 249 s on the plot), the altitude command
was changed to correspond to a ground clearance of 3 cm.
At this height, the plane of propellors is approximately 0.19
m from ground, or about 3/4 of one rotor diameter. In the
parametrization used, β7 is the learned change in the input
mapping for the thrust input, with the nominal value being
the (10, 3) entry of B. As shown in Fig. 2, the parameter
estimate quickly (within approximately 1 s) adjusts to reflect
an increase in the total thrust per unit thrust command (ratio
of β7 to B10,3). A clear increase in effective thrust per input
thrust is seen when the quadrotor is in the vicinity of the
ground; approximately 6% more thrust per unit command
is observed. When the command is returned to the original
value, β7 reverts correspondingly, within about 2 s.

For the same experiment but with standard linear MPC
(nominal model only, no learning), the quadrotor is not
able to hover at the commanded distance above the ground,
because the effective thrust is significantly greater than what
the nominal model predicts. Thus when flying with standard
linear MPC, it is not possible to perform a “soft landing”—
one has to manually cut power to and let the quadrotor fall
the remaining distance.

B. Decreased overshoot in step response

In this experiment, we investigated the effects of LBMPC
on the transient response of the quadrotor to changes in
hover setpoint. The quadrotor was commanded to initially
hover at x = −1 m. The setpoint was repeatedly changed
to x = 1 m and then back to x = −1 m after a delay of
3.5 s. We performed this test with both linear MPC (using

240 245 250 255 260 265 270 275 280

−2

0

2

4

6

8

Time [s]

β
7
/B

1
0
,3

 (
%

)
Variation of parameter β

7
 with ground effect

out of ground effect out of ground effect

in ground effect

Fig. 2. Variation of thrust input mapping (B +H)10,3/B10,3 vs. time.

0 1 2 3 4 5 6

−1

0

1

time [s]

x
N

 p
o

s
it

io
n

 [
m

]

Step input comparison (detail)

cmd

linear MPC

LBMPC

Fig. 3. Step response for linear MPC with nominal model and LBMPC
with learned model. The reference command is the dotted blue line. The
LBMPC response here is from the 4th step command after enabling learning.

only the nominal model) and with LBMPC. Fig. 3 shows a
comparison of the x-axis position of the quadrotor during this
maneuver between linear MPC and LBMPC. The LBMPC
response exibits considerably less overshoot (62% less in
the x = 1 m maneuver shown in Fig. 3) than the linear MPC
response. In addition, we observed that the LBMPC response
characteristics would improve with repeated maneuvers; this
is expected given that the model parameters continue to be
refined with each maneuver. We also observed a greater
decrease in overshoot when successive step maneuvers were
more closely spaced in time. This reflects the fact that the
parameter adjustments learned during the transient flight
are important in improving the stopping characteristics, and
it suggests that a possible avenue for improvement is to
introduce a velocity-dependent drag term in the dynamics
model. This example demonstrates the type of performance
improvement that is possible with LBMPC and a well-
behaved oracle.

C. Robustness to “incorrect learning”

In this experiment, we deliberately caused the dual EKF
to be prone to mis-estimate the model parameters by grossly
increasing the noise process covariance Υ. We allowed the
quadrotor to hover at a height above the ground of 0.85
m using linear MPC (without learning updates; F,H, z all
zero), and enabled learning. After some maneuvering, the
parameter estimates diverged, hitting their bounding limits.
At this time, the quadrotor’s altitude dropped sharply, but the
quadrotor did not contact the ground, and ended up in a stable
hover approximately 0.1 above the ground (see Fig. 4). The
optimization found a feasible solution throughout, and this
demonstrates that even when the oracle degrades the learned
model with respect to the nominal one, the system does not
become unsafe or unstable.

D. Precise maneuvering: ball catching

In this experiment, we tested the dynamic performance
of the quadrotor using LBMPC using a challenging robotic

263 264 265 266 267 268 269 270
0

0.05

0.1

Bad learning − ground clearance

Time [s]

C
le

a
ra

n
c
e
 [

m
]

Fig. 4. Safety is maintained even if parameter learning goes awry.

demonstration task, of catching a ball thrown by a human,
when the ball has an a priori unknown trajectory, before it
hits the ground.

We equipped the quadrotor with a simple plastic cup, with
a circular opening of radius 0.065 m directly above the main
body. The quadrotor is programmed to hover in place at a
fixed altitude, 0.5 m above the ground. A command is issued
to ready the quadrotor to catch the ball. Next, the ball, which
has a mass of 6 g and a diameter of 33 mm (similar to a
ping-pong ball) is tossed towards the robot by hand.

The ball is covered with reflective tape so that the Vicon
system can track it. The measurements of the ball’s position
are fed into a Luenberger observer that uses a nonlinear
model incorporating a quadratic drag term for the state
prediction step, and a linear correction step. The observer’s
velocity estimate is initialized using a finite difference es-
timate from two successive measurements to speed up the
observer’s convergence. Once 20 initial measurements have
been processed, the state estimate is used to propagate the
dynamics model forward to estimate the point x̂c where
the ball’s trajectory will intersect the plane in which the
quadrotor is hovering. The quadrotor’s reference command
is then set to x̂c, and it continues to track updates to x̂c.

The ball catching task is challenging because the quadrotor
must arrive quickly and accurately at the location where
the ball is predicted to be. Given the contraints of the
experiment room, even for a ball thrown high the quadrotor
still has roughly 1 second from the time that the initial x̂c
are available to when the ball actually crosses the plane. The
estimates of xc must be accurate enough from the beginning
that that the quadrotor is not commanded initially in the
wrong direction, thus losing ground when the estimate later
improves. Furthermore, when the quadrotor is accelerating,
the vehicle is tilted and so the effective “catch zone” for
the ball is reduced compared to when the quadrotor is
stationary; this favors an approach in which that can reach
the destination and stabilize quickly.

We were able to achieve a very high rate of successful
catches–over 90%. The vast majority of misses were also
very close, within one or two ball diameters of the edge of the
cup. We elected not to perform a more well-controlled study
of success rates because this would require developing a
repeatable ball-throwing device. At this stage, we believe that
it would be more interesting to investigate a more detailed
nonlinear model for the ball’s dynamics. Indeed we observed
the effects of the Magnus force, which caused a noticeable
curvature in the ball’s path. We attempted to throw the ball in
a similar fashion each time, but some variable amount of spin

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

x
E
 position [m]

−
x

D
 p

o
s

it
io

n
 [

m
]

ball (meas)

ball (est)

ball (pred)

quadrotor (meas)

Fig. 5. Catching a ball—side view of data from ball catching experiment.
Measurements and EKF estimates of the ball’s position throughout its
trajectory, the estimated final position of the ball, the trajectory of the
quadrotor body frame FB are shown. A cartoon approximation of the
quadrotor in its final pose is also shown.

(usually topspin given the underhanded throw) is induced on
each throw.

VII. CONCLUSIONS AND FUTURE WORK

We have described the implementation of modified
LBMPC onboard a quadrotor helicopter, and experiments
that demonstrate some of the performance improvements that
LBMPC can enable. Future work will examine whether the
special structure of the MPC problem could enable improve-
ments in computation time. A possible future direction for
improvement in the ball catching task is to try and identify
the spin based on the available measurements, using a model
that incorporates the Magnus effect.

REFERENCES

[1] M. Schwager, B. J. Julian, M. Angermann, and D. Rus, “Eyes in the
Sky: Decentralized Control for the Deployment of Robotic Camera
Networks,” Proceedings of the IEEE, vol. 99, no. 9, pp. 1541 – 1561,
2011.

[2] G. Hoffmann, S. Waslander, and C. Tomlin, “Distributed coopera-
tive search using information-theoretic costs for particle filters, with
quadrotor applications,” in Proc. of the AIAA Guidance, Navigation,
and Control Conf. and Exhibit, (Keystone, Colorado), Citeseer, Aug.
2006.

[3] I. Austen, “Libyan Rebels Reportedly Used Tiny Canadian Surveil-
lance Drone,” The New York Times, p. A11, Aug. 2011.

[4] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, “Pre-
cision flight control for a multi-vehicle quadrotor helicopter testbed,”
Control Engineering Practice, vol. 19, pp. 1023–1036, June 2011.

[5] A. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy, “Visual Odometry and Mapping for Autonomous Flight
Using an RGB-D Camera,” in 15th International Symposium on
Robotics Research, (Flagstaff, AZ, USA), 2011.

[6] M. Achtelik, S. Weiss, and R. Siegwart, “Onboard IMU and Monoc-
ular Vision Based Control for MAVs in Unknown In-and Outdoor
Environments,” in Proc. IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2011.

[7] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP
multiple micro-UAV testbed,” Robotics & Automation Magazine,
IEEE, vol. 17, no. 3, pp. 56–65, 2010.

[8] O. Purwin and R. D’Andrea, “Performing and extending aggressive
maneuvers using iterative learning control,” Robotics and Autonomous
Sys., vol. 59, pp. 1–11, Jan. 2011.

[9] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous Helicopter Aero-
batics through Apprenticeship Learning,” The International Journal of
Robotics Research, vol. 29, pp. 1608–1639, June 2010.

[10] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-
trees: Feedback Motion Planning via Sums-of-Squares Verification,”
The International Journal of Robotics Research, vol. 29, pp. 1038–
1052, Apr. 2010.

[11] J. H. Gillula and C. J. Tomlin, “Guaranteed Safe Online Learning of a
Bounded System,” in Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), (San Francisco, CA), 2011.

[12] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably Safe
and Robust Learning-Based Model Predictive Control,” July 2011.
arXiv:1107.2487v1 [math.OC]. [Online].

[13] W. Langson, I. Chryssochoos, S. Raković, and D. Q. Mayne, “Robust
model predictive control using tubes,” Automatica, vol. 40, pp. 125–
133, Jan. 2004.

[14] K. J. Å ström and B. Wittenmark, Adaptive Control. Prentice-Hall,
2nd ed., 1994.

[15] S. S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence,
and Robustness. Prentice-Hall, 1994.

[16] A. Aswani, N. Master, J. Taneja, D. Culler, and C. Tomlin, “Reducing
Transient and Steady State Electricity Consumption in HVAC Using
Learning-Based Model-Predictive Control,” Proceedings of the IEEE,
vol. PP, no. 99, pp. 1–14, 2011.

[17] A. Aswani, P. Bouffard, and C. Tomlin, “Extensions of Learning-Based
Model Predictive Control for Real-Time Application to a Quadrotor
Helicopter,” submitted, 2011.

[18] J. G. Leishman, Principles of helicopter aerodynamics. Cambridge
University Press, 2006.

[19] R. L. Andersson, A Robot Ping-Pong Player: Experiments in Real-
Time Intelligent Control. 1988.

[20] W. Yingshi, S. Lei, L. Jingtai, Y. Qi, Z. Lu, and H. Shan, “A novel
trajectory prediction approach for table-tennis robot based on nonlinear
output feedback observer,” in Robotics and Biomimetics (ROBIO),
2010 IEEE International Conference on, pp. 1136–1141, IEEE, 2010.

[21] L. Ljung, “Asymptotic behavior of the extended Kalman filter as
a parameter estimator for linear systems,” IEEE Transactions on
Automatic Control, vol. 24, pp. 36–50, Feb. 1979.

[22] I. Kolmanovsky and E. Gilbert, “Theory and computation of distur-
bance invariant sets for discrete-time linear systems,” Mathematical
Problems in Engineering, vol. 4, no. 4, pp. 317–363, 1998.

[23] L. Chisci, J. Rossiter, and G. Zappa, “Systems with persistent dis-
turbances: predictive control with restricted constraints,” Automatica,
vol. 37, no. 7, pp. 1019–1028, 2001.

[24] P. Bouffard, “starmac-ros-pkg ROS repository.” http://www.ros.
org/wiki/starmac-ros-pkg, 2011.

[25] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System,” in ICRA Workshop on Open Source Software,
(Kobe, Japan), 2009.

[26] P. E. Gill, S. J. Hammarling, W. Murray, M. A. Saunders, and M. H.
Wright, “User’s Guide for LSSOL (Version 1.0),” 1986.

[27] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” Control Systems Technology, IEEE Transactions on,
vol. 18, no. 2, pp. 267–278, 2010.

[28] H. Ferreau, H. Bock, and M. Diehl, “An online active set strategy to
overcome the limitations of explicit MPC,” International Journal of
Robust and Nonlinear Control, vol. 18, no. 8, pp. 816–830, 2008.

[29] M. Zeilinger, C. Jones, and M. Morari, “Real-time suboptimal model
predictive control using a combination of explicit MPC and online
optimization,” Automatic Control, IEEE Transactions on, vol. 56,
no. 99, pp. 1–1, 2008.

[30] S. Waslander, G. Hoffmann, J. Jang, and C. Tomlin, “Multi-agent
quadrotor testbed control design: Integral sliding mode vs. reinforce-
ment learning,” in Intelligent Robots and Systems, 2005.(IROS 2005).
2005 IEEE/RSJ International Conference on, pp. 3712–3717, IEEE,
2005.

[31] S. Bouabdallah and R. Siegwart, “Full control of a quadrotor,” in Intel-
ligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International
Conference on, no. 1, pp. 153–158, IEEE, 2007.

[32] N. Guenard, T. Hamel, and L. Eck, “Control laws for the tele operation
of an unmanned aerial vehicle known as an x4-flyer,” in Intelligent
Robots and Systems, 2006 IEEE/RSJ International Conference on,
pp. 3249–3254, IEEE, 2006.

