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Abstract—Heating, ventilation, and air conditioning (HVAC)
systems are an important target for efficiency improvements
through new equipment and retrofitting because of their large
energy footprint. One type of equipment that is common in
homes and some offices is an electrical, single-stage heat pump air
conditioner (AC). To study this setup, we have built the Berkeley
Retrofitted and Inexpensive HVAC Testbed for Energy Efficiency
(BRITE) platform. This platform allows us to actuate an AC unit
that controls the room temperature of a computer laboratory on
the Berkeley campus that is actively used by students, while
sensors record room temperature and AC energy consumption.
We build a mathematical model of the temperature dynamics
of the room, and combining this model with statistical methods
allows us to compute the heating load due to occupants and
equipment using only a single temperature sensor. Next, we
implement a control strategy that uses learning-based model
predictive control (MPC) to learn and compensate for the amount
of heating due to occupancy as it varies throughout the day and
year. Experiments on BRITE show that our techniques result
in a 30-70% reduction in energy consumption as compared
to two-position control, while still maintaining a comfortable
room temperature. The energy savings are due to our control
scheme compensating for varying occupancy, while considering
the transient and steady state electrical consumption of the AC.
Our techniques can likely be generalized to other HVAC systems
while still maintaining these energy saving features.

Index Terms—Air conditioning, building automation, energy
efficiency, learning, model predictive control.

I. INTRODUCTION

BUILDINGS account for 73% of the electricity and 40%
of greenhouse gas emissions in the United States [1], [2].

Heating, ventilation, and air conditioning (HVAC) compose
33% of building energy usage, making this an attractive target
for reductions [1]. Several parallel directions are being taken
towards the aim of reducing HVAC energy, one of which is the
design of new, more efficient equipment. However, buildings
and equipment are often slowly replaced [3]. This has led to
interest in retrofitting HVAC to improve efficiency.
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The simplest way to retrofit is to only change the software
that controls the HVAC, but this is a challenging problem
because of the large variety of physical effects that are used by
HVAC equipment. Many homes use a single-stage heat pump
that cools air at a constant rate for the entire building. In
contrast, some large buildings use variable air volume (VAV)
systems to centrally cool air that is partitioned into different
amounts for each room. Some HVAC systems incorporate
thermal storage tanks that freeze liquid at night and then
provide cooling by allowing it to melt during the day.

HVAC equipment requires a separate design process tailored
to its particular physical modalities. Within the cyber-physical
system (CPS) community, the focus of research has been on
modeling and control for VAV systems [4]–[7] or thermal
storage tanks [8]. Occupants and equipment generate heat that
raises the temperature of rooms, and existing HVAC control
struggles with these effects because of their significant varia-
tion over time. Current work in this area concerns combining
occupancy sensors with models of human behavior to estimate
the number of occupants in different rooms [9].

We focus on reducing the energy usage for an electric,
single-stage heat pump air conditioner (AC) that cools a single
area, and our work is distinguished from past work by three
aspects. First, this HVAC equipment is common in homes
and has not been extensively studied by the CPS community.
Second, modeling and statistics are used to estimate the
heating load (i.e., amount of thermal energy transfer to the
building) of occupants and equipment using only a temperature
sensor. Third, we design a control scheme that improves
efficiency by explicitly adapting to the occupancy heating
load. These techniques are expected to generalize to other
HVAC systems, though implementation and modeling details
will vary depending upon equipment physics.

The second point is important from a general CPS view-
point. One approach to solving CPS problems is to study the
integration and communication of large numbers of sensors.
For this particular application, we take an alternative approach.
We evaluate how more intelligent computation may enable
a reduction in the number of sensors needed to achieve a
given task. This is done by constructing mathematical models
that incorporate the physical aspects of the system, and then
designing statistical schemes that combine these models with
measurements to reduce the amount of needed infrastructure.

In order to conduct experiments, we have built the Berke-
ley Retrofitted and Inexpensive HVAC Testbed for Energy
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Efficiency (BRITE). The BRITE testbed controls the room
temperature of a computer laboratory on the Berkeley campus
that is actively used by students. A computer actuates the AC
unit by relaying computed control actions through a local area
network (LAN) to the thermostat. Sensors are able to measure
the room temperature and power consumption of the AC.

BRITE is a living laboratory, and so its large variations in
weather and occupant behavior make it difficult to directly
compare different control strategies. To overcome this chal-
lenge, we cyber-physically compare control methods using a
mixture of experiments and simulations. This allows for a
more fair comparison by using identical weather and occu-
pancy conditions, but this does introduce some error into the
comparisons because of modeling mismatch. To alleviate these
issues, we alternate between the control schemes we use for
experimentation and simulations.

We implement a new control technique on BRITE known
as learning-based model predictive control (MPC) [10], which
has provable properties considering its safety and robustness.
It combines models with statistics to estimate occupancy
heating load from only temperature measurements and then
compensate for it within the control action, thereby reducing
the amount of room overcooling and thus saving energy. Our
experiments show that learning-based MPC reduces energy
consumption by 30-70% compared to two-position control,
which is the control scheme used by a typical thermostat [11].

A. CPS Aspects of Single-Stage Heat Pump Control

Heat pumps [12] are commonly used in homes to provide
AC, and they use electrical energy to run a motor that com-
presses gas. It is the subsequent expansion of this compressed
gas that is able to provide cooling for air that is then delivered
to the entire building. Most heat pumps have motors with one
fixed speed and are called single-stage. Multi-stage heat pumps
can run the compressor motor at different speeds, but they
are less common. We focus on single-stage equipment in our
work because (a) this is the existing equipment in the room
that we use in BRITE, and (b) the control scheme we develop
can be extended to multi-stage equipment through the use of
appropriate pulse-width modulation (PWM).

The physics of heat pumps leads to particular energy charac-
teristics, and similar behavior occurs in other HVAC systems.
Understanding these features is important for the design of
efficient HVAC systems, and is reflective of insights gained
from a CPS viewpoint. A tighter integration of the software
to the physics of the HVAC allows for improved performance
by reducing the conservativeness of the control schemes. In
the case of HVAC, comfort is equivalent to keeping the
room temperature within a range of temperatures [13], and
conservativeness is how close the temperature is kept towards
the boundaries of this range.

Keeping temperature near the boundaries of comfort uses
less energy, because less heat transfer is required. In the case
of AC, two-position control means that the AC is turns on
when the room temperature exceeds Ton and turns off when
the temperature is below Toff . Because of its physics, the AC
continues to cool for a few minutes even after it is turned

off [14]. This actually represents overcooling and is a major
cause of inefficiency. The obvious fix is to set Toff to be
nearly identical to Ton; however, this is not practical because
of the physics of the equipment.

A heat pump has high transient power consumption when it
is turned on, and then it uses lower amounts of power at steady
state. This transient power is due to inrush current (a brief
period of high current flow when turning on the electric motor
that drives the compressor in the heat pump) and an increased
load on the electric motor at startup (the pressure of the gasses
in the heat pump are initially out of equilibrium [15]). The
transient power consumption of a heat pump puts a limit on its
switching frequency, because otherwise the equipment behaves
inefficiently and can also be damaged.

The high transient power usage acts as a penalty for turning
the AC on. Efficient control schemes need to balance the
efficiency from turning the heat pump on and off frequently
(this reduces overcooling) with the added energy consumption
and physical fatigue of frequent switching. This tradeoff can
be handled by the learning-based MPC technique, which picks
control actions for the AC that minimize a cost (consisting of
steady state energy consumption, transient energy consump-
tion from switching, and deviation from desired temperature)
subject to the thermal dynamics of the room and constraints
on the allowed temperatures of the room.

II. BERKELEY RETROFITTED AND INEXPENSIVE HVAC
TESTBED FOR ENERGY EFFICIENCY

BRITE is a system for testing different control strategies
on an AC unit that cools a computer laboratory on the
Berkeley campus, and it is shown in Fig. 1. Though it is built
using commodity parts, the computers can be replaced with
microcontrollers. The strength of this structure is that it scales
to building-wide systems. Moreover, our MPC schemes are
computationally scalable because of their convexity.

In this testbed, the LoCal server gathers sensor data and
stores this in a Simple Measurement and Actuation Profile
(sMAP) database [16]. A control computer accesses the In-
ternet and LoCal server to get weather forecasts and sensor
data, and it runs a learning-based MPC scheme that computes
a control input that is sent through the LoCal server to the
thermostat. The thermostat transmits a corresponding signal
to the AC.

A. LoCal
The Berkeley LoCal project aims to produce a network

architecture for localized electrical energy reduction, genera-
tion, and sharing by examining how pervasive information can
fundamentally change the nature of these processes [17]. A key
component of this is the use of sMAP [16] to exchange phys-
ical data about the systems involved. This allows producers of
physical information to directly publish their data in a format
for consumption by a diverse set of clients. We use temperature
measurements from a networked thermostat in BRITE, though
we also have the capability to measure plug-load [18] and
wireless temperature readings. The ability to easily integrate
streams of sensor data is critical to the scalability of BRITE
to entire buildings.
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Fig. 1. The Berkeley Retrofitted and Inexpensive HVAC Testbed for Energy Efficiency (BRITE) is a system built on the Berkeley campus that allows testing
of different control strategies for controlling an AC in order to explore tradeoffs between energy consumption and tracking a temperature setpoint.

B. Room, Air Conditioner, and Thermostat

The BRITE testbed shown in Fig. 1 is deployed in a
student computing laboratory on the ground floor of a large
engineering building. The room is 640 square feet, has external
windows on its south and west walls, and contains 16 desktop
computer workstations and two laser printers. Occupancy of
the room peaks at over 20 individuals and is constantly varying
depending upon the due dates of projects, assignments, and
exams. An important reason that this room was chosen for the
testbed is that it has its own HVAC equipment, which allows
us to do experiments independent of other rooms.

A Proliphix brand NT160e model thermostat controls the
AC. It is a modern thermostat with networking functionality
that allows computers on a shared network to communicate
with it and control it. We can transmit commands to the
thermostat and also receive diagnostic information on the ther-
mostat settings, current HVAC state, and room temperature.

C. Control Computer

We use a dedicated control computer to avoid disrupting
processes running on the LoCal computer, though their com-
bined functionality can be implemented on a single micro-
controller. The control computer runs a 64-bit version of the
Ubuntu operating system, and the control loop is implemented
in MATLAB: The learning-based MPC [10] uses the SNOPT
solver [19] from the TOMLAB library, and polytopes are han-
dled using the MPT toolbox [20]. A Python script downloads
weather forecasts from NOAA’s National Weather Service.

D. Metrics for Human Comfort

The objective of BRITE is to minimize energy consump-
tion while keeping occupants comfortable. However, there
are multiple ways to quantify comfort. The ANSI/ASHRAE

standards [13] are defined in terms of the predicted mean vote
(PMV), which is a complex function of indoor air temperature,
human activity, relative air velocity, the occupants’ clothing,
and other variables that are difficult to measure [21]. The
Occupational Safety and Health Administration (OSHA) [22]
does not have regulations but provides guidelines of 68–76◦F
(about 20–24.4◦C). Alternative metrics are defined in terms
of on temperature deviation: Category A, B, and C thermal
requirements [13] respectively dictate a temperature range of
2◦C, 4◦C, and 6◦C.

These alternatives specify temperature bands and simplify
the design of HVAC systems. In experiments on the BRITE
testbed, we keep the temperature near the middle of comfort
(22◦C) and try to satisfy Category A requirements, because
these are the strictest and consume the most energy. More
specifically, Category A is used as a range preference for the
learning-based MPC and Category B are hard constraints on
the temperature range. Future directions can consider smart
methods for switching between different Category require-
ments based on, for instance, network-level load and demand
signaling or occupancy estimates.

III. ELECTRICAL CHARACTERISTICS AND ENERGY
CONSUMPTION OF A SINGLE-STAGE HEAT PUMP

Fig. 2 shows experimentally measured data of a typical
power consumption profile for the HVAC in BRITE. A strik-
ing feature is that there are both transient and steady state
behaviors. There is a transient spike in power consumption
immediately after the heat pump is turned on that lasts for
about one minute, before the power consumption reaches a
steady state. Intuitively, the large transient is a penalty for
turning the heat pump on. Physically, the transient power
consumption is due to inrush current drawn by the electric
motor in the compressor of the heat pump, as well as due to
non-equilibrium pressure conditions in the heat pump [15].
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As mentioned earlier, this profile highlights some important
issues regarding energy usage. The transient spike in power
consumption suggests an objective that minimizes switching.
This is not typically considered in an explicit manner, and
in fact makes the implementation of a controller in digital
hardware difficult unless some approximation is used. Fur-
thermore, the steady state energy usage is linear in the control,
which matches the cost used in [5] and differs from the more
commonly used quadratic cost [6].

A. Pulse Width Modulation Control

The single-state heat pump is strictly speaking a hybrid
system [23], [24] because it has two modes corresponding
to the pump being on or off. Fortunately, we can considerably
simplify the design of a controller by considering sampled
control. As such, we use MPC to compute a new control action
u[k] at intervals of once every 15 minutes. We chose this rate
because switching more frequently than once every 10 to 15
minutes can physically damage the heat pump. Pulse-width
modulation (PWM) is used to convert the discrete time control
u[k] into a continuous signal that turns the AC on or off [25],
and so u[k] can also be interpreted as a duty cycle.

There is an important note to make regarding why the
constraints on the input for the MPC are u[k] ∈ [0, 0.5]. The
reason for the choice of 0.5 as an upper value is because the
thermostat does not stop cooling the room when it is turned off.
This is discussed in more detail in Sect. IV, but the choice of
0.5 ensures that the control action at one discrete time sample
does not affect the control action at the next one.

B. Measuring the Electrical Energy Consumption in BRITE

It is important to be able to compute the energy consumed
by the AC in the BRITE platform, given the input that the
AC receives. An estimate of the energy consumption is used
in the cost function of MPC, and it is useful for being able to
compare different control schemes. To be able to provide this
equation, we need to make a few definitions. Define the vector
um =

(
u[m] . . . u[m+N − 1]

)
. The term ‖um‖0 counts

the number of nonzero entries in the vector um. Also, the
values r, λ are constants which are used to compute the energy
consumption. The value N is the number of discrete time steps
(recall that each time step corresponds to 15 minutes) over
which the energy consumption is to be computed.

The steady state energy consumption of the AC over N/4
hours in units of (kWh) is given by

∑N−1
k=0 r/4 · u[m + k],

where r = 3.7kW is the average rate of steady state energy
consumption in the BRITE platform (compare to Fig. 2) and
the value 4 is used to compensate for the fact that u[m+k] is
the control for 1/4 of an hour. Furthermore, the AC consumes
λ = 0.015kWh of energy every time we turn the AC on; this
corresponds to the area of the triangle in Fig. 2 formed by the
transient energy. The total energy used over N time steps is
given by

Eactual =

N−1∑
k=0

r/4 · u[m+ k] + λ‖um‖0. (1)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

Minutes

k
W

 

 

Transient Power  (0.01 kWh)

Steady State Power (0.35 kWh)

Fig. 2. Experimental data of a typical power consumption profile during
actuation in the BRITE testbed is shown. The first vertical dashed line
indicates the time when the heat pump turns on, the second indicates the
time when the power reaches steady state, and the third indicates the time
when the heat pump turns off. For this particular power profile, the amount
of total energy consumed by the transient and steady state is labeled in the
legend.

Unfortunately, the ‖um‖0 term is not convex in um. Con-
vexity is important for the computations of the MPC that has
to solve an optimization problem at each step. To simplify
the computations, we make a standard convex relaxation [26]
and replace the term ‖um‖0 with ‖um‖1. This relaxation
is powerful: When it is used in the cost function of an
optimization problem, it actually leads to having many of the
u[m + k] be equal to exactly zero [26]. In this way, it can
reduce switching of the AC.

This approximation yields a convex equation for the energy
consumed

∑N−1
k=0 r/4 ·u[m+k]+λ‖um‖1. However, we have

u[m+ k] ≥ 0, and so we can further simplify the convex cost
for energy consumption to

Econvex =

N−1∑
k=0

(r/4 + λ) · u[m+ k]. (2)

What is surprising about this is that a cost for energy that is
linear in the length of control action automatically considers
a cost for switching, as long as the inputs u[m + k] are
constrained to be non-negative. Stated in another way, this
means that a cost that is linear in the duty cycle of the
control inherently considers the tradeoff between switching
too frequently and the length of the duty cycle.

In practice, (1) is used if the actual energy needs to
be computed. On the other hand, (2) is used if a control
action needs to be computed by the MPC. Having these two
formulations gives considerable flexibility.

IV. SYSTEM IDENTIFICATION OF COOLING DYNAMICS

An important step towards realizing efficient control
schemes for the BRITE testbed is building a mathematical
model that describes the impact of weather, occupancy, and
AC operation on the temperature of the room. It is important
because all MPC schemes inherently require a nominal model
in order to be able to optimize system performance. More im-
portantly, identifying a model allows us to estimate the heating
load due to occupancy from only temperature measurements.
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This enables evaluation of the importance of occupancy [6],
[27] and techniques that compensate for it.

Though building simulator software [28], [29] models com-
plicated thermodynamic and fluid effects, experimental data
collected from buildings show that linear models with ex-
ogenous inputs [4]–[6], [27] can often be used to describe
many rooms. The main physical effect is convective heat
transfer and is described by Newton’s law of cooling. This
is a linear ordinary differential equation (ODE), and so it may
be abstracted as a resistor-capacitor network [4]–[6].

A. Discrete Time Model

There is a “delay” from when the AC is turned off and
when it stops cooling the room, due to the dynamics of the
heat pump. Specifically, the evaporator which cools the air
does not instantly warm up and continues to cool air for some
time after the heat pump is turned off [14]. We begin with
a discrete time model where each time step is separated by
Ts = 15 minutes. The advantage of this approach is that the
AC behavior gets lumped into a single term that encompasses
the modes where the AC is on and then turned off but still
cooling. This makes it easier to do the modeling.

With this approach and inspired by the physics of convective
heat transfer, we start with the model

T [n+ 1] = krT [n]− kcu[n] + kww[n] + q[n], (3)

where T [n] ∈ [15, 30] is the temperature of the room in (◦C),
kr > 0 is the time constant of the room, kc > 0 is the change
in temperature over 15 minutes in (◦C) caused by cooling for
a duty cycle of u[n] ∈ [0, 0.5], kw > 0 is the time constant for
heat transfer from the room to the outside, w[n] is the outside
temperature in (◦C), and q[n] is change in temperature over
15 minutes due to the heating from occupancy of humans and
equipment within the room, as well as other external inputs,
in (◦C). The time constants here are dimensionless.

B. Parameter Identification

We collected data from 12:00PM to 5:30AM on a weekday
using the BRITE testbed. This portion of the day was used
because it exhibits a variety of occupancy levels. The room
is actively used by students during the afternoon and evening,
with fewer students using the room late at night and early in
the morning.

Generally speaking, parameter estimation is usually more
accurate when the control inputs are independent of the system
states or external inputs (i.e., weather and occupancy). To
ensure that this was the case, we actually applied a random
input with uniform distribution over [0, 0.5] at each discrete
time step; the corresponding PWM control is shown in Fig. 3a.
Because this only needs to be done once and over a span of
about a day, it may be reasonable to allow the temperature in
actual implementations to be unregulated for this day. Future
work includes designing methods that keep the temperature in
a comfortable range while still sufficiently exciting the system.

Because we have measurements of T , w[n], and u[n], the
model is linear with respect to the parameters kr, kc, and kw.
On the other hand, q[n] is not known and is expected to be

highly nonlinear with respect to time, because it incorporates
heating due to human occupancy and equipment in the room.
Consequently, standard linear system identification techniques
cannot be used. Identification of models with the form given
in (3) more generally falls into the class of problems known
as semi-parametric regression of partially linear models [30],
[31]. An alternative approach is to parametrize q[n], with say
a polynomial or spline basis, and then identify all parameters
using nonlinear regression. The difficulty with this is the
uncertainty associated with q[n].

Using the technique given in [31], we identified the param-
eters of the model

T [n+1] = 0.64 · T [n]− 2.64 · u[n] + 0.10 ·w[n] + q[n], (4)

where q[n] is shown in Fig. 3b. The experimental room tem-
perature is the solid line in Fig.3c. Similarly, the temperature
simulated by the model (4) is the dashed line shown in Fig.3c,
and the initial condition for the simulation was taken from
the experimental measurements. Furthermore, the simulation
was conducted with the same inputs as were applied to the
real BRITE system. The root-mean-squared (RMS) error of
the simulation is 0.10 ◦C. The plots show that the model fits
reasonably well to the measured temperature data.

C. Impact of Occupancy

The identified model (4) shows that the role of occupancy
is significant in the temperature dynamics of the room, con-
firming the intuition of [6] and results of [27]. The function
q[n] has an average value of 6.98◦C, and it is highly nonlinear
with respect to time: It varies by up to 0.61◦C depending on
what time of day it is. Furthermore, there are fluctuations over
both long and short time horizons.

The heat generated by occupancy and equipment q[n] dis-
plays interesting features. The room is a computer labora-
tory used by students at their own convenience and shows
characteristics consistent with this role. The heat input q[n]
increases from lunchtime and peaks at 1PM, while the outside
temperature peaks at 2PM. The occupancy has quick changes
in its direction at 3PM and 5PM. Finally, it is relatively
constant from 8PM to 5AM, which is typically when there
are few or no students in the room.

The large fluctuations have a major impact on the design
process of a control scheme. This is because the nominal
model for which a controller is designed can be inaccurate by
0.61◦C (in our case) because of varying levels of occupancy.
This causes issues with respect to efficiency, because standard
MPC requires accurate models to provide high performance.
It is for this reason that we make use of learning-based MPC
[10] to design the controller. It will estimate occupancy by
measuring the temperature of the room and comparing it to
what is expected by the model (4).

D. Modeling the Two-Position Control of Thermostat

For the purpose of comparing the energy consumption of
different control strategies, it is useful to identify a model of
the two-position control of the thermostat. The thermostat does
its control in continuous time, and so this model is an ordinary
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Fig. 3. At each discrete time step, we applied a randomly generated input, which is the duty cycle of the PWM over 15 minute periods, taken from a
uniform distribution ranging over [0, 0.5]. This was done over a period of the day (12:00AM to 5:30AM) during which the room is both in and not in use.
Using semi-parametric regression [31], we identified both a discrete time model (4) and the term q[n] which is given in units of (◦C) and includes heating
due to occupancy, equipment, and other external inputs. The measured room temperature is given in units of (◦C) by the solid line, and a simulation of our
model in units of (◦C) is shown by the dashed line. The simulation uses the same inputs as provided to the BRITE platform over this range, and the initial
condition of the simulation is taken to be the experimentally measured temperature. The simulation has a root-mean-squared (RMS) error of 0.10 ◦C.

differential equation. Part of the model is derived from a
statistical analysis of temperature data from BRITE gathered
over a 20 hour period. On average, the thermostat turns
the AC on when the temperature reaches 22.8◦C (standard
deviation of less than 0.1◦C), and it turns the AC off when
the temperature reaches 22.4◦C (standard deviation of 0.1◦C).
The thermostat has a feature called a heat anticipator that
adjusts the top and bottom temperature thresholds, in an effort
to conserve energy and reduce overcooling. We do not model
this behavior. Furthermore, it takes the AC an average of 354
seconds (standard deviation of 75 seconds) to stop cooling the
room after it is turned off. Though this is due to the internal
dynamics of the heat pump, we approximate this by assuming
that the AC stops cooling after a fixed time.

We again used semi-parametric regression on data from
BRITE to estimate a continuous time model for the two-
position control. The time constants for the room and heat
transfer to the outside were taken from the discrete time model
(4) and converted into continuous time constants by doing the
reverse of an exact discretization. The model identified is

Ṫ = −5.0× 10−4 · T + 1.4× 10−4 · w(t)− 1.2× 10−3

+ q(t), (5)

if the AC is turned on or for the first 354 seconds after it is
turned off. Otherwise, the dynamics are given by

Ṫ = −5.0× 10−4 · T + 1.4× 10−4 · w(t) + q(t). (6)

In our model, the AC turns on when the temperature exceeds
Ton = 22.8◦C, and it turns off when the temperatures goes
below Toff = 22.4◦.

Visually examining the measured (Fig. 4a) and simulated
(Fig. 4b) temperature under two-position control indicates that
there are several modeling errors; many of these are previously
mentioned, but we collect them into one location for clarity.
The temperature in the simulation rises slower than on BRITE,
and this indicates that the identified time constant is slower
than it should be. Furthermore, the model does not incorporate
the internal dynamics of the heat pump or the thermostat’s heat
anticipator logic. Also, there is variation in the steady-state and
transient energy consumption that is not captured in (1), which
is used to make energy estimates.

Despite the modeling errors and simplifications, the simu-
lation and (1) are reasonable proxies. The true (Fig. 4a) and
simulated (Fig. 4b) temperature of the BRITE platform under
two-position control over a period starting at midnight share
similar qualitative features. The occupancy heating q(t) is not
shown because it displays characteristics similar to Fig. 3b and
that in [27]. Moreover, the true energy consumed by the AC
was measured to be 8.6kWh, computed by (1) to be 8.6kWh,
and simulated to be 9.0kWh. This represents an error of less
than 1% and 5%, respectively.

The overshoot of going below Toff seen in both the
measured and simulated temperature is in some sense wasted
energy because it represents overcooling of the BRITE space.
And even though the thermostat in BRITE has a heat an-
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Fig. 4. The thermostat used two-position control to maintain the temperature. Its average on and off temperatures were Ton = 22.8◦C and Toff = 22.4◦C,
and these are shown by the solid, horizontal lines. The experimentally measured temperature is shown in (◦C). Semi-parametric regression was used to identify
a continuous time model, and a simulation of this model using experimentally measured temperature as the initial condition is shown in (◦C). The control of
the simulation is different than the experimental control, and it was determined using the Ton and Toff values. The energy estimated by the simulation is
9.0kWh, and (1) applied to the measured inputs computes 8.6kWh; this is in contrast to the measured consumption of 8.6kWh. Despite modeling errors,
the energy estimates differ from the true value by only 5% and less than 1%.

ticipator that adjusts the Ton and Toff of the two-position
control, it cannot adequately compensate for variations in
weather and occupancy. The learning-based MPC scheme we
have developed can compensate for these factors, and so it can
prevent overcooling and thus save energy.

V. LEARNING-BASED MPC OF BRITE

Safety and robustness can be guaranteed with approximate
models, but maximum efficiency requires accurate models.
This tradeoff has driven research in adaptive control [32], [33]
and learning-based control [34]–[36]. Statistical methods by
themselves cannot ensure robustness [37], [38], and so the
approach of learning-based MPC [10] is to begin with an
approximate model of the system and refine it with statistical
methods. It is a rigorous control method that (a) handles state
and input constraints, (b) optimizes system performance with
respect to a cost function, (c) uses statistical identification tools
to learn model uncertainties, and (d) provably converges.

The control situation is as follows. We have a model (4) for
the cooling dynamics of the BRITE room, and we have con-
straints on the maximum (24◦C) and minimum temperature
(20◦C) to ensure comfort for people in the room. Preliminary
experiments [27] made use of tube-MPC [39]–[41] (a form of
robust MPC [42]) to ensure that these constraints were never
violated despite varying occupancy and uncertainties in the
weather forecast. However, testing over an extended period of
time showed that the robust MPC described in [27] was too
conservative because, when tracking a desired temperature of
(22◦C), the temperature rarely approached the constraints.

Consequently, we began to test standard linear MPC for
its ability to stay within the desired temperature range. This
control scheme had the same property in our tests—that
it kept the room temperature within the constraints. It is
important to remember this fact that a standard linear MPC
ensures constraint satisfaction. However, the energy efficiency

of this base scheme was lacking. It was unable to stay close
to the desired (22◦C), and it could use more energy than
two-position control of the thermostat. Because of this, we
implemented a learning-based MPC technique to control the
room temperature.

A. Special Case of Learning-Based MPC

The main idea of this technique [10] is that we decou-
ple performance from robustness. By robustness, we mean
whether an MPC scheme can ensure constraint satisfaction
despite modeling errors and other uncertainties. Linear MPC
itself has certain robustness properties [43]. As a practical
issue, our tests on the BRITE testbed show that standard linear
MPC gives sufficient robustness. In more general cases, we
would need to use tube-MPC to ensure enough robustness for
learning-based MPC [10].

We use a tilde to denote the temperature predicted by the
learning-based model, an overline denotes the temperature
predicted by the linear model with constant occupancy term
6.98◦C, and no overline indicates the measured temperature.
The control action at time m, with temperature T [m], control
horizon N = 20 (5 hours), weight p = 0.075, and desired
temperature Td = 22◦C is given by the minimizer to the
following optimization problem

minu[·]
∑N

k=0 p · (T̃ [m+ k]− Td)2+ (7)

+
∑N=1

k=0 (r + λ) · u[m+ k]

s.t. T̃ [m+ i] = 0.64 · T̃ [m+ i− 1]− 2.64 · u[m+ i− 1]
(8)

+ 0.10 · w[m+ i− 1] + q̂[m+ i− 1]

T [m+ i] = 0.64 · T [m+ i− 1]− 2.64 · u[m+ i− 1]

+ 0.10 · w[m+ i− 1] + 6.98 (9)

T [m+ i] ∈ [20, 24] (10)
u[m+ i− 1] ∈ [0, 0.5] (11)
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for i = 1, . . . , N . The problem (7) generates an input u[m] that
minimizes the expected future performance of BRITE with
respect to a cost function that encodes energy consumption
and temperature deviation. Here, the term q̂[n] represents
the predicted amounts of occupancy and is computed using
learning. In our unoptimized MATLAB code, this computation
(7) takes between one to two seconds. It is easily scalable to
larger problems because (7) is simply a quadratic program.

The optimization problem (7) decouples performance and
robustness in the following manner. Robustness is due to the
constraints (9) which are nothing more than the identified
model (4) with constant occupancy. Performance is due to
the use of (8) in the cost function. The intuition is that the
cost depends on the learned occupancy q̂ through (8), and the
control is chosen such that the MPC without learning that
is sufficiently robust (4) would satisfy the temperature and
control constraints.

There are several important things to note about this formu-
lation (7). The cost function contains (a) p · (T [m+ k]−Td)2
that represents deviation from the desired temperature and (b)
the convex energy (2). This explicitly controls the tradeoff
between keeping the temperature close to a comfortable value
and the amount of energy used, and the value p = 0.075 was
chosen because it gives a good tradeoff. Also, the convex en-
ergy (2) encourages a tradeoff between minimizing switching
and duration of keeping the AC on, as discussed in Sect. III-B.

B. Learning Occupancy

Estimating occupancy is a detailed process that requires
combining models of human behavior with sensors [9]. The
BRITE platform faces an additional challenge because the
occupancy varies immensely over the span of days and weeks,
depending upon when assignments and projects are due. Some
of the occupancy, such as for assignments, will likely be
periodic in nature; other occupancy, like for projects, is more
irregular and harder to predict. Furthermore, we need to know
the heat generated by occupants and their use of computer
equipment in the room for the purposes of energy efficient
control. The correlation between the number of individuals in
the room and the heat load will likely vary depending upon
how many computers are in use.

Instead of relating the number of individuals in the BRITE
room to the heat load q[n], we focus our efforts on estimating
this q[n] directly from the temperature measurements and our
model (4). We use the estimate

q̂[m+ i] = T [m]−
(
0.64 · T [m− 1]

− 2.64 · u[m− 1] + 0.10 · w[m− 1]
)
, (12)

for i = 0, . . . , N − 1. The intuition is that the occupancy
heating q[n] is the discrepancy in what the linear model
without the occupancy term 6.98 predicts the temperature at
the next time step is and what the actual temperature is.

The approach we take in this paper is to use the simplest
possible estimate — more accurate estimates of q[n] taking
into account specific models will only improve the energy
efficiency of the BRITE testbed. An obvious extension is to

fit our estimates to curves of best fit (e.g., a line or parabola)
to compensate for the time-varying nature of the occupancy.
Other extensions are to incorporate models of human behavior
and other sensors.

We used this estimate of the occupancy for several reasons.
As mentioned, this is the easiest estimate in terms of modeling:
We do not need to worry about how to model long and short
term human behavior. Secondly, it is well-behaved. Extrap-
olations using curves of best fit can significantly over- and
under-estimate on long time-horizons. Finally, this estimate is
easy to compute and shows that the learning can be done in
a scalable manner.

VI. EVALUATING THE ENERGY EFFICIENCY OF
LEARNING-BASED MPC WITH BRITE

The original aim of building the BRITE platform [27] was
to enable evaluation of existing methods and design new
control schemes that minimize the energy consumption needed
to maintain a comfortable temperature in the room. In our
experiments, linear MPC had inconsistent performance due to
its inability to compensate for the impacts of occupancy; it
had difficulty with either saving energy as compared to two-
position control [27] or maintaining temperature close to the
desired value. This is related to a fundamental tradeoff in
control systems between robustness to model uncertainty and
performance due to model accuracy [10].

We implemented a learning-based MPC scheme [10] with
the intuition that this could provide improved performance and
reduce energy usage. Our experiments on the BRITE platform
suggest that this is indeed the case. The energy improvements
come from two features of the learning-based MPC. First, it
can compensate for fluctuations in weather and occupancy
through learning. For instance, the two-position control of
the thermostat overcools the room when occupancy is low,
and the heat anticipator in the thermostat does not adequately
compensate. Second, it considers the penalty due to electrical
consumption by the heat pump transient and tries to optimize
the tradeoff between minimizing switching and AC on time.

A. Experimental Methodology on BRITE

BRITE is a living laboratory in which we cannot control
weather and occupant behavior, and so we cannot make
direct experimental comparisons between control methods.
One potential solution is to run many experiments, but this is
difficult due to the huge variability in weather and occupancy.
Our approach is to run one control scheme on BRITE and
simulate the others. This allows a comparison under identical
weather and occupancy conditions, though with some error
between the simulated and real energy consumptions because
of modeling mismatch. To mitigate this, we alternate which
method is simulated.

The results of two experiments are summarized in Table
I. The first controlled BRITE with two-position control, and
the second used learning-based MPC on BRITE; we do not
include any experiments with linear MPC. The energy usage
measured by BRITE and estimated by (1) are both provided for
these experiments. These are compared to energy consumption
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Energy Tracking Temperature Average
Method Switches On Duration Measured Estimated Error Variation External Load

Two-Position Learning-Based MPC 94 6.0 hours 23.6kWh 0.75◦C 0.13◦C 11.0◦C
Control Experiment Linear MPC 96 7.9 hours 30.5kWh 0.62◦C 0.30◦C 11.0◦C

Two-Position 71 9.2 hours 32.6kWh 35.1kWh 0.61◦C 0.20◦C 11.0◦C
Learning-Based Learning-Based MPC 81 3.3 hours 11.8kWh 13.3kWh 0.86◦C 0.17◦C 8.7◦C

MPC Experiment Linear MPC 70 2.0 hours 8.6kWh 0.93◦C 0.21◦C 8.7◦C
Two-Position 38 9.2 hours 34.5kWh 0.55◦C 0.19◦C 8.7◦C

TABLE I
SUMMARY OF EXPERIMENTAL AND SIMULATED ENERGY COMPARISONS ON BRITE

estimates, using (1), of simulations of other control schemes
under identical weather and occupancy levels. The table lists
the number of times the AC was turned on, the duty cycle
of the AC, the tracking error as measured by the RMS error
between the room temperature and the desired temperature
Td = 22◦C, and the variation in the room temperature as
measured by its standard deviation. The external load corre-
sponds to the average temperature increase over 15 minutes
caused by the weather and occupancy.

B. Two-Position Control Experiment on BRITE

Over a 24 hour span beginning and ending on a weekday, we
started running the two-position control of the thermostat on
BRITE at 11PM. The experimentally measured temperature
is shown in Fig. 5a. Using our models, we simulated the
corresponding behavior of the learning-based MPC, which is
shown in Fig. 5b. For our simulation, we used the stored
weather forecasts, true weather temperature, and occupancy
estimated using our model of two-position thermostat control.
The learning-based MPC used an estimated 28% less energy
than the two-position control. The PWM control actions cor-
responding to two-position control and learning-based MPC
are shown in Fig. 5c and Fig. 5d, respectively. Moreover, Fig.
5e shows the change in temperature over 15 minutes corre-
sponding to experimentally measured weather and occupancy
(i.e., kww[n] + q[n]).

C. Learning-Based MPC Experiment on BRITE

We ran the learning-based MPC control on the BRITE
platform over a time range that covered two weekdays, and
started at roughly 1PM. The experimentally measured temper-
ature is shown in Fig. 6a. Using our models, we simulated
the corresponding behavior of the two-position control, which
is shown in Fig. 6b. For our simulation, we used the true
weather temperature and occupancy estimated using our model
of the learning-based MPC. Our learning-based MPC approach
on BRITE is estimated to reduce the energy consumption
by 66%, when compared to the existing two-position control
scheme. The control actions corresponding to the two-position
and learning-based MPC are shown in Fig. 6c and Fig. 6d,
respectively. The measured weather and occupancy for this
experiment kww[n] + q[n] is given in Fig. 6e.

D. Discussion of Results

Both comparisons show that significant energy is saved by
the learning-based MPC scheme. It is useful to discuss what

features of our implementation and scheme contribute to this,
because many of these principles may generalize to other
HVAC systems. Broadly speaking, the improvements come
about through the use of modeling and statistical techniques.

Identifying a discrete time version of a mathematical model
taken from physics (3) helps to improve efficiency. There
are complex dynamics in the heat pump, and the evaporator
continues to briefly cool air after the heat pump is turned off
[14]. The discrete time form of the model (3) accounts for this
behavior by considering the AC behavior over a 15 minute
span of time, rather than its instantaneous behavior.

Furthermore, identifying the parameters of the model allows
us to be able to estimate occupancy through only temperature
measurements, as in (12). These occupancy estimates are
important because this feature of the system adds considerable
variation in the temperature dynamics of the room. Whereas
two-position control overcools the room when there is lower
occupancy, learning-based MPC detects lower levels of occu-
pancy and reduces the amount of cooling.

Lastly, the electrical energy characteristics of the heat pump
are important to conserving energy. The transients of the heat
pump effectively add a penalty, in terms of energy used, for
switching too frequently. The learning-based MPC can make
a tradeoff between how long the heat pump is turned on for
and how often it switches, and it can dynamically adjust this
tradeoff based on the estimated occupancy.

This tradeoff is actually very interesting, because it leads
to counter-intuitive behaviors with the learning-based MPC.
Examining the temperature of the learning-based MPC (i.e.,
Figs. 6a and 5b) shows that the bands within which the
temperature is maintained actually vary over time. Generally
speaking, when the outside temperature or occupancy are
high, the learning-based MPC actually tightens the temperature
bands. When the outside is cold or occupancy is low, the
learning-based MPC widens the temperature bands.

These behaviors can be explained by thinking of the elec-
trical behavior of the heat pump. When the temperature or
occupancy is high, the AC needs to be turned on for a greater
fraction of time. The steady state energy consumption is much
higher than the transient energy consumption, and so the
learning-based MPC does not penalize as much for frequently
switching. In fact, it increases switching to prevent overcooling
the room. In the opposite situation, the AC needs to do less
total cooling. Here, the steady state energy consumption is
smaller and so transient energy due to switching becomes
important. The learning-based MPC reduces switching in these
cases and allows for larger temperature variations.
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Fig. 5. The AC was controlled by the two-position control of the thermostat, and the corresponding measured room temperature is shown in units of
(◦C). A simulation of the learning-based MPC is given in (◦C). The two-position control uses 32.6kWh (estimated 35.1kWh) of electrical energy, and the
learning-based MPC is estimated to use 23.6kWh. The PWM control generated by the two-position and learning-based MPC control are also shown. An AC
state of 0 corresponds to the AC off, and AC state of 1 corresponds to the AC on. The external heating load over 15 minutes due to weather and occupancy
kww[n] + q[n] is given in (◦C).

VII. CONCLUSION

We have presented our BRITE platform, studied the tran-
sient and steady-stage electrical characteristics of the heat
pump in BRITE, identified a dynamical model of the system,
explained the impact of occupants on the dynamics, and
implemented a learning-based MPC scheme that estimates
occupancy using only temperature measurements. Experiments
show that learning-based MPC saves an estimated 30-70% of
energy compared to two-position control. More sophisticated
estimates of occupancy will likely yield further reductions.

One future direction is evaluating how the energy savings
depend upon the outside temperature and occupancy levels;

the lower 28% savings occurred on a warmer day than the
savings of 66%. It is not known how much of this is due to
differences in weather versus simulation modeling errors. We
are gathering more data to further evaluate these issues.

Another planned direction is the implementation of
learning-based MPC on a larger testbed. We have studied a
single-stage heat pump for a single room or small building;
however, large HVAC systems for many rooms adds more
challenges to the problem of saving energy [4]–[8]. Estimating
and adjusting for occupancy, as well as the transient and
steady-state electrical consumption of the HVAC equipment,
will likely lead to real savings in energy.
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Fig. 6. The AC was controlled by the learning-based MPC, and the corresponding measured room temperature is shown in units of (◦C). A simulation of
the two-position control is given in (◦C). The learning-based MPC uses 11.8kWh (estimated 13.3kWh) of electrical energy, and the two-position control
is estimated to use 34.5kWh. The PWM control generated by the learning-based MPC and the two-position control are also shown. An AC state of 0
corresponds to the AC off, and AC state of 1 corresponds to the AC on. The change in temperature over 15 minutes corresponding to experimentally measured
weather and occupancy kww[n] + q[n] is provided in (◦C).
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