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Abstract— A new technique called learning-based model
predictive control (LBMPC) rigorously combines statistics and
learning with control engineering, while providing levels of
guarantees about safety, robustness, and convergence. This
paper describes modifications of LBMPC that enable its real-
time implementation on an ultra-low-voltage processor that is
onboard a quadrotor helicopter testbed, and it also discusses
the numerical algorithms used to implement the control scheme
on the quadrotor. Experimental results are provided that
demonstrate the improvement to dynamic response that the
learning in LBMPC provides, as well as the robustness of
LBMPC to mis-learning.

I. INTRODUCTION

Linear control is popular in applications because of its
simplicity and robustness, but this can come at the expense
of performance. Increasing societal and economic pressures
require techniques that more easily handle the tradeoff be-
tween robustness and performance, and learning-based model
predictive control (LBMPC) [1] is one such new method:
It handles system constraints, optimizes performance with
respect to a cost function, uses statistical identification tools
to learn model uncertainties, and provably converges.

In one application, LBMPC led to a 30-70% reduction
in electrical energy usage on BRITE (an air-conditioning
testbed) over the standard thermostat control [2]; LBMPC
had more consistent temperature regulation and energy re-
duction properties than linear MPC. Encouraged by the re-
sults on BRITE, we have implemented LBMPC on a quadro-
tor helicopter. This paper presents a version of LBMPC that
is modified to enable its application on the quadrotor.

The LBMPC method has its origins in robust [3], [4],
adaptive [5], [6], [7], learning-based [8], [9], [10], and model
predictive control (MPC) [11], [12], [13], [14], [15], [16].
It has similarities to the adaptive MPC in [17]. Adaptive
control modifies controller parameters to match a reference
closed-loop response, and learning-based control improves
performance by using expert-guidance or iterated experi-
ments. Unfortunately, model learning alone cannot be used
to guarantee safety [18], [19], and so these methods often
rely on expert-guided trajectories for safety.

The main insight of LBMPC is that performance and
safety in MPC can be decoupled. Performance is specified by
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making the cost function be dependent on learned dynamics,
and safety is ensured by letting the constraints be dependent
on an approximate model and its uncertainty. The LBMPC
scheme is provably safe as long as it can be shown that a
nominal controller provides safety for the approximate model
with its uncertainty. This can be done for linear systems
[20], [21], piecewise-affine systems [22], [23], [24], [25], and
(nonlinear) continuous-time systems [26], [27], [28], [29].

The differences between LBMPC in [1] and the mod-
ifications here include: extension to linear affine systems,
restructuring constraints to reduce conservativeness, decou-
pling of the feedback gains used in the cost function and
used to compute the terminal set, a method for computing
an outer approximation of an important reachablity set, an
analysis to ensure that the learning is designed so as to not
do more than fundamental theoretical limitations preclude,
and an extension of dual extended Kalman filters to handle
the type of learning used for the quadrotor application.

We introduce the quadrotor and then discuss approxima-
tions of an important reachable set. The modified LBMPC
and the learning used on the quadrotor are summarized. Next,
the optimization software used to compute the control is
described. Lastly, we provide results from two experiments of
LBMPC on the quadrotor. A companion paper [30] contains
details on system identification, equipment setup, and ad-
ditional experiments. The video http://www.youtube.
com/watch?v=dL_ZFSvLXlU shows experiments.

II. QUADROTOR HELICOPTER TESTBED

We experimented on an AscTec Pelican quadrotor with
a 1.6Ghz single-core Intel Atom N270 processor, 1GB of
RAM, and 8GB of storage memory. It runs a software stack
developed for quadrotor experimentation [31]. The “low-
level” controller provided by AscTec accepts attitude (i.e.,
roll, pitch, yaw rate) and thrust commands. Our laboratory
environment is equipped with a Vicon MX motion cap-
ture system, which tracks the 3D position of small retro-
reflective markers using an array of cameras with near-
infrared illumination strobes. The system can measure the
rigid body pose of an object equipped with several markers,
and this provides measurements of the system state. A laptop
computer integrates these components through a local area
network, with the quadrotor using WiFi. The laptop allows
both manual and autonomous modes of flight.

III. PRELIMINARIES

This section introduces the components of our technique,
and it defines the discrete time model used for control.



A. Notation

The j-th element of a vector v is denoted as vj , and we
use A′ to denote the matrix transpose of A. Marks above a
variable distinguish the state, output, and input of different
models of the same system. The true system has state x, the
estimated state is x̂, the linear model with disturbance has
state x̄, and the model with oracle [1] has state x̃. Similar
marks are used for the corresponding inputs and outputs.

B. Polytopes

Let V be a convex, compact polytope in Rn. This set can
be represented as a set of linear inequalities [15]. If L is the
corresponding number of inequalities, then this set is

V = {x : Fvx ≤ hv}, (1)

where Fv ∈ RL×n and hv ∈ RL. There is another repre-
sentation of V as the convex hull of a set of points, but this
formulation is not amenable to numerical optimization.

The Minkowski sum [32] of two sets U ,V is defined as
U ⊕ V = {u + v : u ∈ U ; v ∈ V}, and their Pontryagin set
difference [32], [33] is defined as U 	V = {u : u⊕V ⊆ U}.
Their properties are non-obvious: For instance, (U⊕V)	V 6=
U in general. For the set U , the linear transformation of the
set by matrix T is given by TU = {Tu : u ∈ U}.

The Pontryagin set difference and linear transformation
can be quickly computed [33], [15]; however, computing the
Minkowski sum is NP-hard [34], except in special cases [35].
Thus, we mainly use it for theoretical arguments.

C. Model

A discrete-time model of the quadrotor is used, where
time is indexed by n ∈ Z+. The state x ∈ R10 includes six
states for position and velocity and four states for angular
position and velocity; we do control in a frame of reference
in which yaw is fixed. The inputs u ∈ R3 specify thrust and
two angular positions, and the measured output y ∈ R5 is
the three position states and two angular position states.

Using this notation, the dynamics of the quadrotor can be
given by a model of the form

x[n+ 1] = Ax[n] +Bu[n] + k + h(x[n], u[n])

y[n] = Cx[n] + ε[n].
(2)

The matrices A ∈ R10×10, B ∈ R10×3 and vector k ∈ R10

define the nominal model, and the readout matrix C ∈ R5×10

reflects the fact that only five out of the ten states are
measured. Also, k is an affine term that incorporates the
effect of gravity; the term h(x[n], u[n]) : R10 × R3 → R10

is Lipschitz continuous with respect to (x, u), and it repre-
sents unmodeled dynamics. The ε[n] ∈ R5 term represents
measurement error, and it is assumed to be independent and
identically distributed at each time step. We assume that
ε[n] ∈ E , where E is a convex, compact polytope.

The system is safe if it satisfies state x[n] ∈ X and
input u[n] ∈ U constraints, where X ,U are convex, compact
polytopes. Similarly, we assume that the function h(x, u)
satisfies the constraints h(x, u) ∈ W for all (x, u) ∈ (X ,U),
where W is a convex, compact polytope. The intuition of

these assumptions is that the model represents a linear system
with bounded uncertainty.

D. The Oracle

The dynamics of the model that uses the oracle are given
by

x̃[n+ 1] = Ax̃[n] +Bũ[n] + k +On(x̃[n], ũ[n]), (3)

where On is a time-varying oracle which returns an estimate
of the unmodeled dynamics and A,B, k are taken from (2).

An important case is when On is a disturbance d[n] ∈ D
for a bounded, convex polytope D. We model the unknown
dynamics and estimation error as a bounded disturbance and
use a linear model to construct sets such that the control
generated by the MPC with oracle is guaranteed to be safe.
In this case, the state x̄, output ȳ, and input ū of the linear
model have dynamics

x̄[n+ 1] = Ax̄[n] +Bū[n] + k + d[n]. (4)

The form of the oracle On that we use for model learning
in the quadrotor application is the linear affine function

On(x, u) = Fx+Hu+ z, (5)

where F ∈ R10×10, H ∈ R10×3, and z ∈ R10 are sparse. For
example, the A2,1 entry is set to zero since the velocity does
not depend on position, and the corresponding F2,1 entry is
also set to zero because this entry should not be modified by
the oracle. On the other hand, the B10,3 entry describes the
aerodynamic lift provided per unit of thrust input, and the
associated H10,3 entry corrects for changes in aerodynamic
lift due to proximity to the ground (i.e., the “ground effect”).

IV. LEARNING-BASED MODEL PREDICTIVE CONTROL

This section presents the LBMPC method as used on the
quadrotor, and theoretical results about the method can be
found in [1]. Among these results is the fact that LBMPC
can maintain three types of robustness. First, the value func-
tion of the optimization problem in LBMPC is continuous.
Second, LBMPC is input-to-state stable (ISS) under certain
conditions. Third, system constraints can be satisfied subject
to all possible disturbances.

In some cases, maintaining a particular kind of robustness
could possibly lead to overly conservative design. As de-
signed, our implementation always maintains robustness due
to continuity of the value function. Heuristics for robustness
due to ISS and constraint satisfaction under all disturbances
are designed based on the original LBMPC theory.

A. Feasible Set Point Tracking

Before we present the modified LBMPC, we need to
introduce some concepts related to feasible set point tracking
for a constrained linear affine system subject to disturbances.
The steady-state output ys corresponds to some xs, us, and
it can be characterized [13], [16] by the set of solutions to(

A− I B 0
C 0 −I

)xsus
ys

 =

(
−k
0

)
. (6)



These solutions form a set of affine subspaces that can be
parametrized—similarly to [13], [16], [1]—as xs = Λθ+x0,
us = Ψθ + u0, ys = Πθ + y0, where θ ∈ R3; Λ,Ψ,Π; and
x0, u0, y0 are (possibly zero) vectors.

The maximal output admissible disturbance invariant set
Ω ⊆ X × R3 was defined in [33]. It is a set of points
such that any trajectory of the system with initial condition
chosen from this set remains within the set for any sequence
of bounded disturbance, while satisfying constraints on the
state and input. Consider any point (x, θ) ∈ Ω, where the θ
component parametrizes points that can feasibly be tracked
using a linear controller. If K̄ is a nominal feedback gain
such that (A+BK̄) is Schur stable, then the set Ω satisfies
• disturbance invariance:(

Ax+BK̄
(
x− (Λθ + x0)

)
+B

(
Ψθ + u0

)
+ k, θ

)
⊕
(
D, 0

)
⊆ Ω; (7)

• constraint satisfaction:

Ω ⊆ {(x, θ) : x ∈ X ; Λθ + x0 ∈ X ;

K̄(x− (Λθ+ x0)) + (Ψθ+ u0) ∈ U ; Ψθ+ u0 ∈ U}.
(8)

B. Invariant Set Computations for the Quadrotor

Robust constraint satisfaction is the property that following
the control law provided by the LBMPC will never lead to a
situation in which a constraint is violated at some point in the
future. It holds for both the original and modified LBMPC,
provided that the set Ω can be computed; however, we are
unable to compute this set for the quadrotor. Because of these
difficulties, we use an approximation of Ω that displays good
performance and robustness on the quadrotor.

Methods for computing Ω [20], [21] start with an initial
approximation of the set, and they refine the approximation
by successively adding linear constraints to the polytope. The
Ω for the quadrotor may be comprised of many constraints,
and this may explain why we could not compute Ω: We may
not have allowed the algorithms enough time to terminate.
However, using a complex Ω would increase the computation
time for the LBMPC so as to render it not implementable
in real time. The second possible explanation for why we
cannot compute Ω is that it does not exist for the parameters
of our quadrotor, but this would be reflective of the overly-
conservative nature of this type of robustness rather than a
statement about the controllability of the system.

To overcome these difficulties, we use an outer approx-
imation of the set Ω. The idea is to start by rewriting the
disturbance invariance condition (7) as

(Ax+BK̄(x−(Λθ+x0))+B(Ψθ+u0)+k, θ) ⊆ Ω	(D, 0)
(9)

and then relax it to

(Ax+BK̄(x−(Λθ+x0))+B(Ψθ+u0)+k, θ) ⊆ X	(D, 0).
(10)

The set of points that satisfy (9) are a subset of the points
that satisfy (10), because Ω ⊆ X by construction.

Because the constraints X ,U and disturbance bounds D
are compact, convex polytopes, we can exactly represent the
outer approximation of Ω as the points that satisfy a set of
linear inequalities. Let FPx ≤ hP , Fxx ≤ hx, and Fux ≤ hu
be the inequality representations of the polytopes X 	D, X ,
and U , respectively. The approximation ω is given by the set
of points (x, θ) that satisfy the linear inequalities
FP (A+BK̄) FPB(Ψ− K̄Λ)

Fx 0
0 FxΛ

FuK̄ Fu(Ψ− K̄Λ)
0 FuΨ


[
x
θ

]
≤


K1

hx
hx − Fxx̄0

K2

hu − Fuū0

 ,
(11)

where K1 = hP − FP (k + B(K̄x̄0 − ū0)) and K2 = hu −
Fu(K̄x̄0 − ū0).

C. Modified LBMPC for the Quadrotor

LBMPC is based on a linear MPC scheme for tracking
[13] that can be robustified using tube-MPC [11], [12], [16],
and LBMPC reduces conservativeness by making the initial
condition be fixed rather than be an optimization parameter
(cf., [12], [16]). We further modify LBMPC to reduce con-
servativeness by assuming that noise enters only into the first
time step of the model prediction (noise still enters into all
time steps of the true system); the advantage of this is greatly
enlarged regions of feasibility for the optimization problem
that defines the LBMPC. This formulation of LBMPC has the
same robust constraint satisfaction properties of the original
form of LBMPC (the results in [1] trivially extend to this
case).

Suppose the control objective is to track xs. The estimated
steady-state control that keeps the system at this point is
given by us such that (A+F )xs + (B +H)us + (k+ z) =
xs, and this has an explicit solution in terms of the Moore-
Penrose pseudoinverse. The modified LBMPC is given by

min
c[·],θ

‖x̃[m+N ]− x̄s‖2P+

N−1∑
j=0

‖x̃[m+ j]− x̄s‖2Q + ‖ǔ[m+ j]− ūs‖2R (12)

s.t. x̃[m] = x̂[m], x̄[m] = x̂[m] (13)
x̃[m+ i] = (A+ F )x̃[m+ i− 1]

+ (B +H)ǔ[m+ i− 1] + k + z (14)
x̄[m+ i] = Ax̄[m+ i− 1] +Bǔ[m+ i− 1] + k

ǔ[m+ i− 1] = Kx̄[m+ i− 1] + c[m+ i− 1]

x̄[m+ i] ∈ X , ǔ[m+ i− 1] ∈ U
x̄[m+ 1] ∈ X 	D
(x̄[m+ 1], θ) ∈ ω (15)

for all i ∈ I = {1, . . . , N} in the constraints; K is a nominal
feedback gain; ω is the outer approximation of Ω; and the
oracle is the function Fx+Hu+ z. The nominal feedback
gain K is different from the gain K̄, and it is chosen so that
the discrete-time algebraic Ricatti equation (DARE)

(A+BK)′P (A+BK)− P = −(Q+K ′RK) (16)



is satisfied. The constraints in this scheme are applied to the
linear model (4) and not to the oracle model (3). However,
the same control ǔ[·] is used in both models.

Because the functions in the optimization problem are con-
tinuous and the constraints are linear, this implies continuity
of the value function [1]; this is in fact one type of robustness
[36]. ISS can be shown if the oracle is bounded and this
scheme can be proven to be convergent for the nominal
model [1], but we have been unable to prove this. The reason
for this is that existing proof techniques apply to the case
where K̄ ≡ K, but that is not true here. However, our
empirical observation of an implementation on the quadrotor
is that this scheme is effectively ISS; the quadrotor tracks a
steady point within a root-mean-square error of about 2 cm
in each positional direction.

The reason for having K̄ 6= K is that it leads to better
empirical performance on the quadrotor. The intuition for
why this is the case is as follows. The smaller the gain K̄ is,
then the larger the set Ω will be. The advantage of a larger Ω
is a larger feasible region of the LBMPC, and so performance
and robustness will be better. On the other hand, having a
large gain K leads to fast convergence and tracking for the
quadrotor, but it would lead to a very small set Ω. Thus, we
use different values for these two gains.

V. FILTERING

Not all states are directly measured, and so the LBMPC
technique needs to be able to estimate these states in order
to be able to do control; however, the situation is more
complicated because there are unknown coefficients β in
the oracle On(x, u) = Fx + Hu + z. Estimating the states
and coefficients simultaneously must be done with care
because of two reasons. The first is that there are fundamental
limitations: In general, it is not possible to simultaneously
estimate all parameters of an oracle and all states [1]. The
second reason is that the more parameters that need to be
estimated, the higher the estimation error will generally be.

Among the conditions required to ensure that the LBMPC
technique is ISS is that the oracle should be bounded.
Even though we cannot ensure all of the conditions for ISS
(specifically, we cannot show that the value function is a
Lyapunov function), it is good design practice to meet as
many conditions for ISS as possible. We enforce a priori
bounds on the parameters of the oracle

|βi| ≤Mi,∀i (17)

and these bounds can be derived, for instance, from the
bounds on h(x, u) which represents the uncertainty on the
nominal model. Placing these bounds on the parameters and
oracle help to ensure good empirical performance.

A. Checking Observability

Suppose that z were not sparse and that every entry is a
parameter z =

[
β8 . . . β17

]
. Results in [1], for instance,

show that it is impossible in this system to simultaneously
identify the parameters of this z while computing state
estimates x̂ based on noisy measurements y. The central

issue is that of observability: If we augment the state to
(x, β), then being able to identify all the parameters β and
estimate the states x is equivalent to the observability of the
system[
x[n+ 1]
β[n+ 1]

]
=

[
(A+ F )x[n] + (B +H)u[n] + (k + z)

β[n]

]
.

(18)
These equations are jointly nonlinear in (x, β), even though
they are linear in x for fixed β and vice versa. In our
application to the quadrotor, we used standard techniques
[37] to verify the joint observability of the unmeasured states
and the parameters to be identified by the oracle.

B. Dual Extended Kalman Filter
A natural approach for joint state and parameter estimation

is to use an extended Kalman filter (EKF), and we use a
modified EKF [38] that has improved convergence conditions
when the system is linear in the state for fixed parameters
and vice versa. The reason for its improved convergence is
the use of a Luenberger observer to estimate the state and
an EKF to estimate the parameters [38], instead of an EKF
for both the state and parameters.

In the quadrotor, the parameters of the oracle correspond to
a linearization of the unmodeled dynamics about operating
points that vary as the quadrotor moves through the state
space; consequently, the parameters will change. The EKF
of [38] requires the addition of a noise term in order to handle
this.

Let P2[0] ∈ R10×12 be the initial cross-covariance ma-
trix between the initial state estimate x̂[0] and the initial
parameter estimate β[0], and P3[0] ∈ R12×12 be the initial
covariance matrix of the parameter estimates. Define Ξ ∈
R5×5 to be the covariance of the noise in the measurements
ε[n]. In a change to [38], we model the parameters as
β[n+1] = β[n]+µ[n], where µ[n] is noise and Υ ∈ R12×12

is the covariance of the noise.
Let K̂ be a feedback matrix such that A + F − K̂C is

exponentially stable for all β that satisfy the appropriate
bounds (17). This can be verified using the Bauer-Fike
theorem [39], for example. The dual EKF is defined by the
following equations

x̂[n+ 1] = (A+ F )x̂[n] + (B +H)u[n]

+ (k + z) + K̂ζ[n] (19)
ζ[n] = y[n]− Cx̂[n] (20)

L[n] = P2[n]′C ′Ξ−1 (21)

P2[n+ 1] = (A+ F )P2[n] +M [n]P3[n]− K̂ΞL[n]′ (22)
P3[n+ 1] = P3[n]− L[n]ΞL[n]′ − δP3[n]P3[n]′ + Υ (23)

M [n] =
∂

∂β
(Fx̂[n] +Hu[n] + z), (24)

where δ > 0 is a tuning parameter. Furthermore, the
parameter update is given by

β[n+ 1] = bound(β[n] + L[n]ζ[n]), (25)

where the function bound(·) is a function that clips a vector
so that it satisfies the constraints in (17) on β.



VI. OPTIMIZATION FORMULATION

The LBMPC technique in Sect. IV-C is a quadratic pro-
gram (QP), and this can be numerically solved using a variety
of algorithms. Our current implementation uses the LSSOL
solver [40], which is a dense active set solver. We decided
to use this solver because it is what we are currently most
familiar with, and future extensions involve using solvers that
are designed for MPC [41], [42].

Because LSSOL is a dense solver, reducing the number of
variables in the optimization problem will improve computa-
tion speed. This can be done by making substitutions for the
variables x̄,ǔ,and x̃. For the quadrotor, when using a horizon
of N = 15, this leads to a reduction from 363 variables to
33 variables. For example, the variables x̄ can be removed
by noting that

x̄[m+i] = (A+BK̄)ix̂[m]+

i−1∑
j=0

(A+BK̄)i−j(Bc[m+i−1]+k),

(26)
where x̂[m] is the state estimate and is constant. Similar
reductions can be used to remove x̃ and ǔ.

LSSOL provides another opportunity for improving solu-
tion speed, and this is based on the optimization formulation.
The LSSOL solver can also handle the problem when it is
formulated as a constrained least squares problem

min
µ
‖W1µ− v1‖22 (27)

s.t. bL ≤ Uµ ≤ bU . (28)

Numerical tests show that this formulation requires two-
thirds of the computation time on the onboard computer of
the quadrotor as compared to solving the standard formula-
tion of a QP

min
µ
µ′W2µ+ v′2µ (29)

s.t. bL ≤ Uµ ≤ bU . (30)

VII. EXPERIMENTS

We describe two sets of experiments that demonstrate the
features that LBMPC provides, and we run the MPC at 40 Hz
sampling rate with horizon N = 15. The first experiment is
two step inputs applied in relatively quick succession. With
the quadrotor at x1 = −1 m, the desired position is set to
x1 = 1 m for 3.5 s and then set back to x1 = −1 m. A
comparison of the performance of LBMPC with linear MPC
is shown in Fig. 1: The reference command is the dotted
blue line, the LBMPC response is the dashed red line, and
the linear MPC response is the solid green line. The LBMPC
leads to less overshoot on the quadrotor than the linear MPC,
though the rise times are roughly the same.

A second experiment demonstrated the robustness of
LBMPC on the quadrotor. The situation in which the learning
performs poorly and identifies incorrect parameters was
tested by making the EKF unstable: This was achieved by
significantly increasing the noise process covariance of the
parameters Υ from the nominally chosen values. The results
of the experiment are shown in Fig. 2. The quadrotor was
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Fig. 1. With the quadrotor at x1 = −1 m, the desired position is set to
x1 = 1 m for 3.5 s and then set back to x1 = −1 m. A comparison of the
performance of LBMPC with linear MPC is shown in Fig. 1: The reference
command is the dotted blue line, the LBMPC response is the dashed red
line, and the linear MPC response is the solid green line.

commanded to maintain a height of 0.85 m, but because of
the mis-learning the quadrotor makes a drastic fall in altitude;
however, the LBMPC demonstrates robustness by adjusting
the control action, and consequently the quadrotor does not
hit the ground, which is at 0 m.

VIII. CONCLUSION

We have presented a modification of LBMPC that is
tailored to deal with the challenges associated with achieving
a real-time implementation on a quadrotor helicopter. One
future direction motivated by this work is an exploration
of numerical optimization algorithms that are optimized for
MPC [41], [42].
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